Many organic molecules with various functional groups have been used to passivate the perovskite surface for improving the efficiency and stability of perovskite solar cell(PSCs).However,the intrinsic attributes of th...Many organic molecules with various functional groups have been used to passivate the perovskite surface for improving the efficiency and stability of perovskite solar cell(PSCs).However,the intrinsic attributes of the passivation effect based on different chemical bonds are rarely studied.Here,we comparatively investigate the passivation effect among 12 types of functional groups on para-tertbutylbenzene for PSCs and find that the open circuit voltage(VOC) tends to increase with the chemical bonding strength between perovskite and these passivation additive molecules.Particularly,the paratert-butylbenzoic acid(tB-COOH),with the extra intermolecular hydrogen bonding,can stabilize the surface passivation of perovskite films exceptionally well through formation of a crystalline interlayer with water-insoluble property and high melting point.As a result,the tB-COOH device achieves a champion power conversion efficiency(PCE) of 21.46%.More importantly,such devices,which were stored in ambient air with a relative humidity of ~45%,can retain 88% of their initial performance after a testing period of more than 1 year(10,080 h).This work provides a case study to understand chemical bonding effects on passivation of perovskite.展开更多
基金financially supported by the National Natural Science Foundation of China(22005354 and 62025403)Guangdong Basic and Applied Basic Research Foundation(2019A1515110905)+2 种基金Shenzhen Fundamental Research Program(JCYJ20200109142425294)in part supported by funds from Guangdong Science and Technology Program(2019ZT08L075 and 2019QN01L118)in part supported by the Innovation and Technology Commission of Hong Kong SAR(ITS/390/18)。
基金supported by the Research Grants Council of Hong Kong (T23-407/13-N)Innovation and Technology Commission (ITS/088/17)+5 种基金Start-up funds from Central Organization Department and South China University of Technologyfund from the Guangdong Science and Technology Program (2020B121201003)the National Natural Science Foundation of China (21776315)Petro China Innovation Foundation (2017D5007-0402)the Pearl River Talent Program (2019ZT08L075, 2019QN01L118)Fundamental Research Funds for the Central Universities (19CX05001A)。
文摘Many organic molecules with various functional groups have been used to passivate the perovskite surface for improving the efficiency and stability of perovskite solar cell(PSCs).However,the intrinsic attributes of the passivation effect based on different chemical bonds are rarely studied.Here,we comparatively investigate the passivation effect among 12 types of functional groups on para-tertbutylbenzene for PSCs and find that the open circuit voltage(VOC) tends to increase with the chemical bonding strength between perovskite and these passivation additive molecules.Particularly,the paratert-butylbenzoic acid(tB-COOH),with the extra intermolecular hydrogen bonding,can stabilize the surface passivation of perovskite films exceptionally well through formation of a crystalline interlayer with water-insoluble property and high melting point.As a result,the tB-COOH device achieves a champion power conversion efficiency(PCE) of 21.46%.More importantly,such devices,which were stored in ambient air with a relative humidity of ~45%,can retain 88% of their initial performance after a testing period of more than 1 year(10,080 h).This work provides a case study to understand chemical bonding effects on passivation of perovskite.