The recently commercialized fifth-generation(5G)wireless networks have achieved many improvements,including air interface enhancement,spectrum expansion,and network intensification by several key technologies,such as ...The recently commercialized fifth-generation(5G)wireless networks have achieved many improvements,including air interface enhancement,spectrum expansion,and network intensification by several key technologies,such as massive multiple-input multipleoutput(MIMO),millimeter-wave communications,and ultra-dense networking.Despite the deployment of 5G commercial systems,wireless communications is still facing many challenges to enable connected intelligence and a myriad of applications such as industrial Internet-ofthings,autonomous systems,brain-computer interfaces,digital twin,tactile Internet,etc.Therefore,it is urgent to start research on the sixth-generation(6G)wireless communication systems.Among the candidate technologies for 6G,cell-free massive MIMO,which combines the advantages of distributed systems and massive MIMO,is a promising solution to enhance the wireless transmission efficiency and provide better coverage.In this paper,we present a comprehensive study on cell-free massive MIMO for 6G wireless communication networks with a special focus on the signal processing perspective.Specifically,we introduce enabling physical layer technologies for cell-free massive MIMO,such as user association,pilot assignment,transmitter,and receiver design,as well as power control and allocation.Furthermore,some current and future research problems are described.展开更多
文摘The recently commercialized fifth-generation(5G)wireless networks have achieved many improvements,including air interface enhancement,spectrum expansion,and network intensification by several key technologies,such as massive multiple-input multipleoutput(MIMO),millimeter-wave communications,and ultra-dense networking.Despite the deployment of 5G commercial systems,wireless communications is still facing many challenges to enable connected intelligence and a myriad of applications such as industrial Internet-ofthings,autonomous systems,brain-computer interfaces,digital twin,tactile Internet,etc.Therefore,it is urgent to start research on the sixth-generation(6G)wireless communication systems.Among the candidate technologies for 6G,cell-free massive MIMO,which combines the advantages of distributed systems and massive MIMO,is a promising solution to enhance the wireless transmission efficiency and provide better coverage.In this paper,we present a comprehensive study on cell-free massive MIMO for 6G wireless communication networks with a special focus on the signal processing perspective.Specifically,we introduce enabling physical layer technologies for cell-free massive MIMO,such as user association,pilot assignment,transmitter,and receiver design,as well as power control and allocation.Furthermore,some current and future research problems are described.