The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts ...The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.展开更多
A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2.The influences of power, frequency, and oth...A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2.The influences of power, frequency, and other discharge characteristics were investigated in order to have a better understanding of the effect of the packing materials on CO2 decomposition.It is found that porous foamed Cu and Ni not only played a role as the carrier of energy transformation and electrode distributed in discharge gaps but also promoted the equilibrium shifting toward the product side to yield more CO by consuming some part of O2 and O radicals generated from the decomposition of CO2.The maximum CO2 decomposition rates of 48.6%and 49.2% and the maximum energy efficiency of 9.71% and 10.18% were obtained in the foamed Ni and Cu mesh, respectively.展开更多
Macrophages play a pivotal role in systemic lupus erythematosus(SLE)therapy.Efforts have been made to develop multifunctional drug delivery systems capable of directing macrophage polarization.Here,we present a novel ...Macrophages play a pivotal role in systemic lupus erythematosus(SLE)therapy.Efforts have been made to develop multifunctional drug delivery systems capable of directing macrophage polarization.Here,we present a novel hyaluronic acid methacrylate(HAMA)hydrogel microparticle encapsulating multiple cytokines for SLE remission though enhancing macrophage functions.The HAMA microparticles loaded with monocyte chemotactic protein-1(MCP-1)and interleukin-4(IL-4)were fabricated by using a microfluidic technology.The released MCP-1 facilitates the aggregation of inflammatory macrophages,after which IL-4 induces the macrophage phenotype shift from inflammatory M1 to immune-protective M2,thus restoring immune balance.We have demonstrated in MRL/lpr mice that the hydrogel microparticles could improve their efficacy of intraperitoneal drug delivery,modulate immune function,and attenuate the disease symptoms.These results suggest that our proposed microparticles delivery platform has potential clinical value for treating autoimmune diseases.展开更多
Anisotropic NdFeB/SmFeN hybrid bonded magnets were prepared by warm compaction process under an orientation magnetic field of 22 kOe,mixing with anisotropic SmFeN powders in different addition and HDDR-NdFeB powders i...Anisotropic NdFeB/SmFeN hybrid bonded magnets were prepared by warm compaction process under an orientation magnetic field of 22 kOe,mixing with anisotropic SmFeN powders in different addition and HDDR-NdFeB powders in different coercivity.With the addition of 20 wt% SmFeN,the density and remanence of hybrid magnets increase from 5.58 g/cm~3,8.4 kGs to 6.02 g/cm~3,9.0 kGs,respectively.And as the addition amount of SmFeN powders varies from 20 wt% to 40 wt%,the maximum energy product changes less than 0.5 MGOe.In addition,the magnetization process and the interactions between two powders were studied.It is found that the magnetization process of anisotropic NdFeB powders shows distinction in different initial states.The addition of SmFeN powders promotes the rotation of NdFeB powders together with applied field,which is beneficial to the degree of alignment of NdFeB powders.Because of the micron-sized long range coupling effect,the coercivity of hybrid magnets decreases slowly with the increase of low coercivity SmFeN.Meanwhile,the magnetization process of hybrid magnets is different from pure magnets,it increases rapidly at low field and then slowly,next leads to rapidity again and achieves the saturation magnetization finally.展开更多
Based on the difference of the Y-terminal functional group of the silane coupling agent(Y-Si(X)_(3)),four different silane coupling agents were employed to pretreat the surface of the NdFeB powders.The effects of sila...Based on the difference of the Y-terminal functional group of the silane coupling agent(Y-Si(X)_(3)),four different silane coupling agents were employed to pretreat the surface of the NdFeB powders.The effects of silane coupling agents on the flowability and compressibility of compounds for preparing bonded NdFeB magnets were studied.It is indicated that compounds pretreated by silane coupling agents have weaker friction and meshing force.The apparent density is increased by 0.3 g/cm^(3 )compared with the compound without silane coupling agent,and the radial crushing strength is significantly increased by about 3-4 times.In addition,the epoxy resin is more evenly distributed on the surface of the compounds treated by silane coupling agents observed by scanning electron microscopy,and some agglomerated particles are produced.Also,the compressibility of compounds with silane coupling agents is significantly improved due to the fact that hardening exponents are reduced.However,the addition of silane coupling agents has almost no effect on the magnetic properties of bonded magnets.The special energy was used to manifest the flowability of magnetic powder particles representing the macroscopic performance of the force between powder particles,providing a new direction for the study of the interface compatibility of two-phase or multiphase composite materials.展开更多
文摘The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.
基金financially supported by the National Natural Science Foundation of China (No.21663022)
文摘A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2.The influences of power, frequency, and other discharge characteristics were investigated in order to have a better understanding of the effect of the packing materials on CO2 decomposition.It is found that porous foamed Cu and Ni not only played a role as the carrier of energy transformation and electrode distributed in discharge gaps but also promoted the equilibrium shifting toward the product side to yield more CO by consuming some part of O2 and O radicals generated from the decomposition of CO2.The maximum CO2 decomposition rates of 48.6%and 49.2% and the maximum energy efficiency of 9.71% and 10.18% were obtained in the foamed Ni and Cu mesh, respectively.
基金supported by the National Key Research and Development Program of China(No.2020YFA0908200)the Key Program of National Natural Science Foundation of China(Nos.81930043,and 82330055)the National Natural Science Foundation of China(Nos.52073060,and 81720108022).
文摘Macrophages play a pivotal role in systemic lupus erythematosus(SLE)therapy.Efforts have been made to develop multifunctional drug delivery systems capable of directing macrophage polarization.Here,we present a novel hyaluronic acid methacrylate(HAMA)hydrogel microparticle encapsulating multiple cytokines for SLE remission though enhancing macrophage functions.The HAMA microparticles loaded with monocyte chemotactic protein-1(MCP-1)and interleukin-4(IL-4)were fabricated by using a microfluidic technology.The released MCP-1 facilitates the aggregation of inflammatory macrophages,after which IL-4 induces the macrophage phenotype shift from inflammatory M1 to immune-protective M2,thus restoring immune balance.We have demonstrated in MRL/lpr mice that the hydrogel microparticles could improve their efficacy of intraperitoneal drug delivery,modulate immune function,and attenuate the disease symptoms.These results suggest that our proposed microparticles delivery platform has potential clinical value for treating autoimmune diseases.
基金supported by the National Key Research and Development Program of China (2021YFB3500202,2021YFB3500201)the Beijing Youth Top-notch Team Support Project of China (2018000021223TD10)+2 种基金the Beijing NOVA Program (Z211100002121092)the Natural Science Foundation of Hebei Province (E2021103006)the Hebei Province International Science and Technology Cooperation Base Construction Project of China (20591002D)。
文摘Anisotropic NdFeB/SmFeN hybrid bonded magnets were prepared by warm compaction process under an orientation magnetic field of 22 kOe,mixing with anisotropic SmFeN powders in different addition and HDDR-NdFeB powders in different coercivity.With the addition of 20 wt% SmFeN,the density and remanence of hybrid magnets increase from 5.58 g/cm~3,8.4 kGs to 6.02 g/cm~3,9.0 kGs,respectively.And as the addition amount of SmFeN powders varies from 20 wt% to 40 wt%,the maximum energy product changes less than 0.5 MGOe.In addition,the magnetization process and the interactions between two powders were studied.It is found that the magnetization process of anisotropic NdFeB powders shows distinction in different initial states.The addition of SmFeN powders promotes the rotation of NdFeB powders together with applied field,which is beneficial to the degree of alignment of NdFeB powders.Because of the micron-sized long range coupling effect,the coercivity of hybrid magnets decreases slowly with the increase of low coercivity SmFeN.Meanwhile,the magnetization process of hybrid magnets is different from pure magnets,it increases rapidly at low field and then slowly,next leads to rapidity again and achieves the saturation magnetization finally.
基金Project supported by Beijing Youth Top-notch Team Support Project of China(2018000021223TD10)Hebei Province Fund for Transformation of Major Science and Technology Achievements of China(19041029Z)Hebei Province International Science and Technology Cooperation Base Construction Project of China(20591002D)。
文摘Based on the difference of the Y-terminal functional group of the silane coupling agent(Y-Si(X)_(3)),four different silane coupling agents were employed to pretreat the surface of the NdFeB powders.The effects of silane coupling agents on the flowability and compressibility of compounds for preparing bonded NdFeB magnets were studied.It is indicated that compounds pretreated by silane coupling agents have weaker friction and meshing force.The apparent density is increased by 0.3 g/cm^(3 )compared with the compound without silane coupling agent,and the radial crushing strength is significantly increased by about 3-4 times.In addition,the epoxy resin is more evenly distributed on the surface of the compounds treated by silane coupling agents observed by scanning electron microscopy,and some agglomerated particles are produced.Also,the compressibility of compounds with silane coupling agents is significantly improved due to the fact that hardening exponents are reduced.However,the addition of silane coupling agents has almost no effect on the magnetic properties of bonded magnets.The special energy was used to manifest the flowability of magnetic powder particles representing the macroscopic performance of the force between powder particles,providing a new direction for the study of the interface compatibility of two-phase or multiphase composite materials.