Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempte...Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempted to achieve this simulation.A variable boundary condition method for hybrid regional model is proposed to realize the numerical simulation of large-section tunnel construction.Accordingly,the balance of initial ground stress under asymmetric boundary conditions achieves by applying boundary conditions step by step with secondary development ofDynaflowscripts,which is the key issue of variable boundary conditionmethod implementation.In this paper,Gongbei tunnel based on hybrid regional model involvingmulti-field coupling is simulated.Meanwhile,the variable boundary condition method for regional model is verified against model initialization and the ground deformation due to tunnel excavation is predicted via the proposed hybrid regional model.Compared with the monitoring data of actual engineering,the results indicated that the hybrid regional model has a good prediction effect.展开更多
Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed...Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation.展开更多
基金supported by the financial support from National Natural Sci-ence Foundation of China(No.51478340)Natural Science Foundation of Jiangsu Province(No.BK20200707)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB560029)China Postdoctoral Science Foundation(No.2020M671670)Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(No.2020P04).
文摘Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempted to achieve this simulation.A variable boundary condition method for hybrid regional model is proposed to realize the numerical simulation of large-section tunnel construction.Accordingly,the balance of initial ground stress under asymmetric boundary conditions achieves by applying boundary conditions step by step with secondary development ofDynaflowscripts,which is the key issue of variable boundary conditionmethod implementation.In this paper,Gongbei tunnel based on hybrid regional model involvingmulti-field coupling is simulated.Meanwhile,the variable boundary condition method for regional model is verified against model initialization and the ground deformation due to tunnel excavation is predicted via the proposed hybrid regional model.Compared with the monitoring data of actual engineering,the results indicated that the hybrid regional model has a good prediction effect.
基金supported by the financial support from National Natural Science Foundation of China(No.51478340)Natural Science Foundation of Jiangsu Province(No.BK20200707)+4 种基金The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB560029)China Postdoctoral Science Foundation(No.2020M671670)Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education(No.2020P04)the support above is gratefully acknowledged.
文摘Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation.