This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in Februa...This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in February 1975.The foreshocks are related to the main fault and the conjugate faults surrounding the extension step-over in the middle.The initiation timing of the foreshock clusters and the original time of the mainshock were clearly modulated by the Earth's tidal force and coincided with the peak of dilational volumetric tidal strain.As a plausible and testable hypothesis,we proposed a fluid-driven foreshock model,by which all observed seismicity features can be more reasonably interpreted with respect to the results of existing models.Together with some other known examples,the widely existing step-over along strike-slip faults and associated conjugate faults,especially for extensional ones in the presence of deep fluids,favor the occurrence of short-term foreshocks.Although clustered seismicity with characteristics similar to those of the studied case is not a sufficient and necessary condition for large earthquakes to occur under similar tectonic conditions,it undoubtedly has a warning significance for the criticality of the main fault.Subsequent testing would require quantification of true/false positives/negatives.展开更多
This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of ...This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.展开更多
Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried ...Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried out over coral reef-like Ni/Al2O3 catalysts in a continuous flow type fixed-bed reactor.The structure and properties of the fresh and used catalysts were studied by SEM,N2 adsorption-desorption,XRD,H2-TPR,O2-TPO,TG and ICP-AES techniques.The results showed that the coral reef-like Ni/Al2O3 catalysts exhibited better activity than the conventional Ni/Al2O3-H2O catalysts.The activities of coral reef-like catalysts were in the order of Ni/Al2O3-673Ni/Al2O3-573Ni/Al2O3- 473Ni/Al2O3-773.Ni/Al2O3-673-EG catalyst showed not only good activity and improved stability but also superior resistance to carbon deposition,sintering,and Ni loss.Under the reaction conditions of CO/H2(molar ratio)=1:3,593 K,atmospheric pressure and a GHSV of 2500 h-1,CH4 selectivity was 84.7%,and the CO conversion reached 98.2%.展开更多
High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 We...High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 Wenchuan earthquake. The ultimate purpose of this study is to reproduce this earthquake by modeling based on measured frictional properties. Dry gouge of about 1 mm in thickness was deformed dry at slip rates of 0.01 to 1.3 m/s and at normal stresses of 0.61 to 3.04 MPa, using a rotary-shear high-velocity frictional testing machine. The gouge displays slip weakening behavior as initial peak friction decays towards steady-state values after a given displacement. Both peak friction and steady-state friction remain high at slow slip rates are exam- ined and gouge only exhibits dramatic weakening at high slip rates, with steady-state friction coefficient values of about 0.1 to 0.2. Specific fracture energy ranges from 1 to 4 MN/m in our results and this is of the same order as seismically determined values. Low friction coefficients measured on experimental faults are in broad agree- ment with lack of thermal anomaly observed from temperature measurements in WFSD-1 drill hole (Wenchuan Earthquake Fault Scientific Drilling Project), which can be explained by even smaller friction coefficient for the Wenchuan earthquake fault. High-velocity friction experiments with pore water needs to be done to see if even smaller friction is attained or not. Shiny slickenside surfaces form at high slip rates, but not at slow slip rates. Slip zone with slickenside surface changes its color to dark brown and forms duplex-like microstructures, which are similar to those microstructures found in the fault gouges from the Hongkou outcrop. Detailed comparisons between experimentally deformed gouge samples and WFSD drill cores in the future will reveal how much we could reproduce the dynamic weakening processes in operation in fault zones during Wenchuan earthquake at present.展开更多
Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining fail...Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining failures and natural earthquakes. This paper aims, on the one hand, to draw an outline of laboratory AE studies in the last 50 years, which have addressed seismological problems. Topics include the power laws in which the similarity between AEs and earthquakes is involved and progress that has been made in AE technology and laboratory AE study. On the other hand, this study will highlight some key issues intensively discussed, especially in the last three decades, such as aspects related to the pre-failure damage evolution, fault nucleation and growth in brittle rocks and discuss factors governing these processes.展开更多
In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with f...In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.展开更多
This paper reviews 19 apparatuses having highvelocity capabilities,describes a rotary-shear low to highvelocity friction apparatus installed at Institute of Geology,China Earthquake Administration,and reports results ...This paper reviews 19 apparatuses having highvelocity capabilities,describes a rotary-shear low to highvelocity friction apparatus installed at Institute of Geology,China Earthquake Administration,and reports results from velocity-jump tests on Pingxi fault gouge to illustrate technical problems in conducting velocity-stepping tests at high velocities.The apparatus is capable of producing plate to seismic velocities(44 mm/a to 2.1 m/s for specimens of 40 mm in diameter),using a 22 kW servomotor with a gear/belt system having three velocity ranges.A speed range can be changed by 103 or 106by using five electromagnetic clutches without stopping the motor.Two cam clutches allow fivefold velocity steps,and the motor speed can be increased from zero to 1,500 rpm in 0.1-0.2 s by changing the controlling voltage.A unique feature of the apparatus is a large specimen chamber where different specimen assemblies can be installed easily.In addition to a standard specimen assembly for friction experiments,two pressure vessels were made for pore pressures to 70 MPa;one at room temperature and the other at temperatures to 500 °C.Velocity step tests are needed to see if the framework of rate-and-state friction is applicable or not at high velocities.We report results from velocity jump tests from 1.4 mm/s to 1.4 m/s on yellowish gouge from a Pingxi fault zone,located at the northeastern part of the Longmenshan fault system that caused the 2008 Wenchuan earthquake.An instantaneous increase in friction followed by dramatic slip weakening was observed for the yellowish gouge with smooth sliding surfaces of host rock,but no instantaneous response was recognized for the same gouge with roughened sliding surfaces.Instantaneous and transient frictional properties upon velocity steps cannot be separated easily at high velocities,and technical improvements for velocity step tests are suggested.展开更多
This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2...This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.展开更多
Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for ...Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for studying earthquake mechanisms and earthquake hazard analysis.We reviews the experiments and numerical simulations on the effects of stress perturbations on fault slip,and the results show that stress perturbations can change fault stress and trigger earthquakes.The Coulomb failure criterion can shed light on some questions about stress-triggering earthquakes but cannot explain the time dependence of earthquake triggering nor be used to investigate the effect of heterogeneous stress perturbations.The amplitude and period are important factors affecting the correlation between stress perturbation and fault instability.The effect of the perturbation period on fault instability is still controversial,and the effect of the high-frequency perturbation on earthquakes may be underestimated.Normal and shear stress perturbation can trigger fault instability,but their effects on fault slip differ.It is necessary to distinguish whether the stress perturbation is dominated by shear or normal stress change when it triggers fault instability.Fault tectonic stress plays a decisive effect on the mode of fault instability and earthquake magnitude.Acoustic emission activity can reflect the changes in fault stress and the progression of fault nucleation,and identify the meta-instability stage and precursor of fault instability,providing a reference for earthquake prediction.展开更多
The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were stud...The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were studied. CNx films with nitrogen contents from 10.7 to 28.2 at.% had an amorphous structure composing of the carbon bonds of sp2C-C, sp2C-N, and sp3C-N. The TiN inter-layer cause the adhesion of CNx films enhancement. The more nitrogen concentration led to larger film hardness and friction coefficient against GCrl5 steel balls, but the wear rates decreased.展开更多
Dear Editor,Strokes cause 5.8 million deaths each year.Among these victims,~30% are from China1.Acute ischemic stroke(AIS)is the most prevalent subtype of strokes.Although drugs can alleviate the symptoms,the recoveri...Dear Editor,Strokes cause 5.8 million deaths each year.Among these victims,~30% are from China1.Acute ischemic stroke(AIS)is the most prevalent subtype of strokes.Although drugs can alleviate the symptoms,the recoveries of functional vessels within ischemic areas are the critical factor determining the prognosis of patients suffering from AIS2.Nevertheless,the mechanisms involved in cerebral revascularization remain largely unknown.展开更多
COVID-19 remains a serious emerging global health problem,and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity.Here,we present the oropharyngeal microbiota chara...COVID-19 remains a serious emerging global health problem,and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity.Here,we present the oropharyngeal microbiota characteristics identified by shotgun metagenomic sequencing analyses of oropharynx swab specimens from 31 COVID-19 patients,29 influenza B patients,and 28 healthy controls.Our results revealed a distinct oropharyngeal microbiota composition in the COVID-19 patients,characterized by enrichment of opportunistic pathogens such as Veillonella and Megasphaera and depletion of Pseudopropionibacterium,Rothia,and Streptococcus.Based on the relative abundance of the oropharyngeal microbiome,we built a microbial classifier to distinguish COVID-19 patients from flu patients and healthy controls with an AUC of 0.889,in which Veillonella was identified as the most prominent biomarker for COVID-19 group.Several members of the genus Veillonella,especially Veillonella parvula which was highly enriched in the oropharynx of our COVID-19 patients,were also overrepresented in the BALF of COVID-19 patients,indicating that the oral cavity acts as a natural reservoir for pathogens to induce co-infections in the lungs of COVID-19 patients.We also found the increased ratios of Klebsiella sp.,Acinetobacter sp.,and Serratia sp.were correlated with both disease severity and elevated systemic inflammation markers(neutrophil-lymphocyte ratio,NLR),suggesting that these oropharynx microbiota alterations may impact COVID-19 severity by influencing the inflammatory response.Moreover,the oropharyngeal microbiome of COVID-19 patients exhibited a significant enrichment in amino acid metabolism and xenobiotic biodegradation and metabolism.In addition,all 26 drug classes of antimicrobial resistance genes were detected in the COVID-19 group,and were significantly enriched in critical cases.In conclusion,we found that oropharyngeal microbiota alterations and functional differences were associated with COVID-19 severity.展开更多
The temporal and spatial distribution of microfracturing activity in two kinds of granite under triaxial compression has been studied by using a new acoustic emission system. For Inada granite, there is no clear clust...The temporal and spatial distribution of microfracturing activity in two kinds of granite under triaxial compression has been studied by using a new acoustic emission system. For Inada granite, there is no clear clustering of acoustic emission events in time and space, thus it is difficult to exactly deduce the time and position of the major fracturing. While for Mayet granite,acoustic emission events are clustered in time and space, so the time and position of the major fracturing can be exactly predicted according to microfracturing process. Such a difference may result from the difference in deformation mode caused by different rock structures.展开更多
基金jointly funded by the National Key Research and Development Project(2018YFC1503301)the National Natural Sciences Foundation of China(NSFC)(U1839211)the fundamental scientific research project of the Institute of Geology,China Earthquake Administration(IGCEA2123)。
文摘This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in February 1975.The foreshocks are related to the main fault and the conjugate faults surrounding the extension step-over in the middle.The initiation timing of the foreshock clusters and the original time of the mainshock were clearly modulated by the Earth's tidal force and coincided with the peak of dilational volumetric tidal strain.As a plausible and testable hypothesis,we proposed a fluid-driven foreshock model,by which all observed seismicity features can be more reasonably interpreted with respect to the results of existing models.Together with some other known examples,the widely existing step-over along strike-slip faults and associated conjugate faults,especially for extensional ones in the presence of deep fluids,favor the occurrence of short-term foreshocks.Although clustered seismicity with characteristics similar to those of the studied case is not a sufficient and necessary condition for large earthquakes to occur under similar tectonic conditions,it undoubtedly has a warning significance for the criticality of the main fault.Subsequent testing would require quantification of true/false positives/negatives.
基金supported by State Key Laboratory of Earthquake Dynamics(project No. LED2008A03) Wenchuan Earthquake Fault Scientific Drilling Project(WFSD),by a Grant-in-Aid for JSPS Fellows(No.201007605) to the first author (T.Togo),and by a 2009 Grant-in-Aid of Fukada Geological Institute
文摘This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.
基金financially supported by Independent Research Subject from Ministry of Science and Technology of China(No.2008BWZ005)
文摘Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried out over coral reef-like Ni/Al2O3 catalysts in a continuous flow type fixed-bed reactor.The structure and properties of the fresh and used catalysts were studied by SEM,N2 adsorption-desorption,XRD,H2-TPR,O2-TPO,TG and ICP-AES techniques.The results showed that the coral reef-like Ni/Al2O3 catalysts exhibited better activity than the conventional Ni/Al2O3-H2O catalysts.The activities of coral reef-like catalysts were in the order of Ni/Al2O3-673Ni/Al2O3-573Ni/Al2O3- 473Ni/Al2O3-773.Ni/Al2O3-673-EG catalyst showed not only good activity and improved stability but also superior resistance to carbon deposition,sintering,and Ni loss.Under the reaction conditions of CO/H2(molar ratio)=1:3,593 K,atmospheric pressure and a GHSV of 2500 h-1,CH4 selectivity was 84.7%,and the CO conversion reached 98.2%.
基金supported by State Key Laboratory of Earthquake Dynamics (project No.LED2008A03)Wenchuan Earthquake Fault Scientific Drilling Project(WFSD),by a Grant-in-Aid for JSPS fellows to the first author (T.Togo) and a Grant-in-Aid for young scientists(B) 201007605,and by a 2009 FGI Grant-in-Aid of Fukada Geological Institute
文摘High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 Wenchuan earthquake. The ultimate purpose of this study is to reproduce this earthquake by modeling based on measured frictional properties. Dry gouge of about 1 mm in thickness was deformed dry at slip rates of 0.01 to 1.3 m/s and at normal stresses of 0.61 to 3.04 MPa, using a rotary-shear high-velocity frictional testing machine. The gouge displays slip weakening behavior as initial peak friction decays towards steady-state values after a given displacement. Both peak friction and steady-state friction remain high at slow slip rates are exam- ined and gouge only exhibits dramatic weakening at high slip rates, with steady-state friction coefficient values of about 0.1 to 0.2. Specific fracture energy ranges from 1 to 4 MN/m in our results and this is of the same order as seismically determined values. Low friction coefficients measured on experimental faults are in broad agree- ment with lack of thermal anomaly observed from temperature measurements in WFSD-1 drill hole (Wenchuan Earthquake Fault Scientific Drilling Project), which can be explained by even smaller friction coefficient for the Wenchuan earthquake fault. High-velocity friction experiments with pore water needs to be done to see if even smaller friction is attained or not. Shiny slickenside surfaces form at high slip rates, but not at slow slip rates. Slip zone with slickenside surface changes its color to dark brown and forms duplex-like microstructures, which are similar to those microstructures found in the fault gouges from the Hongkou outcrop. Detailed comparisons between experimentally deformed gouge samples and WFSD drill cores in the future will reveal how much we could reproduce the dynamic weakening processes in operation in fault zones during Wenchuan earthquake at present.
基金financial support by the Japan Science Promotion Society(JSPS 21246134)
文摘Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining failures and natural earthquakes. This paper aims, on the one hand, to draw an outline of laboratory AE studies in the last 50 years, which have addressed seismological problems. Topics include the power laws in which the similarity between AEs and earthquakes is involved and progress that has been made in AE technology and laboratory AE study. On the other hand, this study will highlight some key issues intensively discussed, especially in the last three decades, such as aspects related to the pre-failure damage evolution, fault nucleation and growth in brittle rocks and discuss factors governing these processes.
基金supported by State Key Laboratory of Earthquake Dynamics,China
文摘In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.
基金supported by State Key Laboratory of Earthquake Dynamics (Project No.LED2014A06 & LED2010A05)
文摘This paper reviews 19 apparatuses having highvelocity capabilities,describes a rotary-shear low to highvelocity friction apparatus installed at Institute of Geology,China Earthquake Administration,and reports results from velocity-jump tests on Pingxi fault gouge to illustrate technical problems in conducting velocity-stepping tests at high velocities.The apparatus is capable of producing plate to seismic velocities(44 mm/a to 2.1 m/s for specimens of 40 mm in diameter),using a 22 kW servomotor with a gear/belt system having three velocity ranges.A speed range can be changed by 103 or 106by using five electromagnetic clutches without stopping the motor.Two cam clutches allow fivefold velocity steps,and the motor speed can be increased from zero to 1,500 rpm in 0.1-0.2 s by changing the controlling voltage.A unique feature of the apparatus is a large specimen chamber where different specimen assemblies can be installed easily.In addition to a standard specimen assembly for friction experiments,two pressure vessels were made for pore pressures to 70 MPa;one at room temperature and the other at temperatures to 500 °C.Velocity step tests are needed to see if the framework of rate-and-state friction is applicable or not at high velocities.We report results from velocity jump tests from 1.4 mm/s to 1.4 m/s on yellowish gouge from a Pingxi fault zone,located at the northeastern part of the Longmenshan fault system that caused the 2008 Wenchuan earthquake.An instantaneous increase in friction followed by dramatic slip weakening was observed for the yellowish gouge with smooth sliding surfaces of host rock,but no instantaneous response was recognized for the same gouge with roughened sliding surfaces.Instantaneous and transient frictional properties upon velocity steps cannot be separated easily at high velocities,and technical improvements for velocity step tests are suggested.
基金supported by State Key Laboratory of Earthquake Dynamics (project No.LED2010A03)Wenchuan Earthquake Fault Scientific Drilling Project (WFSD-09)
文摘This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.
基金This work is supported by the National Natural Science Foundation of China(U1839211)the Spark Program of Earthquake Science and Technology(XH20044)the State Key Laboratory of Earthquake Dynamics(No.LED2018B06).
文摘Laboratory experiments and numerical simulations on rock friction perturbations,an important means for understanding the mechanism and influencing factors of stress-triggered earthquakes,are of great significance for studying earthquake mechanisms and earthquake hazard analysis.We reviews the experiments and numerical simulations on the effects of stress perturbations on fault slip,and the results show that stress perturbations can change fault stress and trigger earthquakes.The Coulomb failure criterion can shed light on some questions about stress-triggering earthquakes but cannot explain the time dependence of earthquake triggering nor be used to investigate the effect of heterogeneous stress perturbations.The amplitude and period are important factors affecting the correlation between stress perturbation and fault instability.The effect of the perturbation period on fault instability is still controversial,and the effect of the high-frequency perturbation on earthquakes may be underestimated.Normal and shear stress perturbation can trigger fault instability,but their effects on fault slip differ.It is necessary to distinguish whether the stress perturbation is dominated by shear or normal stress change when it triggers fault instability.Fault tectonic stress plays a decisive effect on the mode of fault instability and earthquake magnitude.Acoustic emission activity can reflect the changes in fault stress and the progression of fault nucleation,and identify the meta-instability stage and precursor of fault instability,providing a reference for earthquake prediction.
基金supported by the International Science and Technology Cooperation Program of China(No. 2008DFA51470)
文摘The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were studied. CNx films with nitrogen contents from 10.7 to 28.2 at.% had an amorphous structure composing of the carbon bonds of sp2C-C, sp2C-N, and sp3C-N. The TiN inter-layer cause the adhesion of CNx films enhancement. The more nitrogen concentration led to larger film hardness and friction coefficient against GCrl5 steel balls, but the wear rates decreased.
基金This work was supported by the National Natural Science Foundation of China(81630068,31670881,81502628,and U1304804)the Health Commission of Henan Province(YXKC2020056 and 201702013).
文摘Dear Editor,Strokes cause 5.8 million deaths each year.Among these victims,~30% are from China1.Acute ischemic stroke(AIS)is the most prevalent subtype of strokes.Although drugs can alleviate the symptoms,the recoveries of functional vessels within ischemic areas are the critical factor determining the prognosis of patients suffering from AIS2.Nevertheless,the mechanisms involved in cerebral revascularization remain largely unknown.
基金The authors thank the Heilongjiang Province Oral Microecological Technology Innovation Center for providing technical support,and the funding of Heilongjiang Province Applied Technology Research and Development Program(GA20C003,GA20C006)the Medical Science Research Fund of Beijing Medical and Health Foundation(YWJKJJHKYJJ-B20284EN)the Program for Innovation Research of Heilongjiang Provincial Hospital and the National Natural Science Foundation of China(31825008 and 31422014 to Z.H.and 61872117 to F.Zha).
文摘COVID-19 remains a serious emerging global health problem,and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity.Here,we present the oropharyngeal microbiota characteristics identified by shotgun metagenomic sequencing analyses of oropharynx swab specimens from 31 COVID-19 patients,29 influenza B patients,and 28 healthy controls.Our results revealed a distinct oropharyngeal microbiota composition in the COVID-19 patients,characterized by enrichment of opportunistic pathogens such as Veillonella and Megasphaera and depletion of Pseudopropionibacterium,Rothia,and Streptococcus.Based on the relative abundance of the oropharyngeal microbiome,we built a microbial classifier to distinguish COVID-19 patients from flu patients and healthy controls with an AUC of 0.889,in which Veillonella was identified as the most prominent biomarker for COVID-19 group.Several members of the genus Veillonella,especially Veillonella parvula which was highly enriched in the oropharynx of our COVID-19 patients,were also overrepresented in the BALF of COVID-19 patients,indicating that the oral cavity acts as a natural reservoir for pathogens to induce co-infections in the lungs of COVID-19 patients.We also found the increased ratios of Klebsiella sp.,Acinetobacter sp.,and Serratia sp.were correlated with both disease severity and elevated systemic inflammation markers(neutrophil-lymphocyte ratio,NLR),suggesting that these oropharynx microbiota alterations may impact COVID-19 severity by influencing the inflammatory response.Moreover,the oropharyngeal microbiome of COVID-19 patients exhibited a significant enrichment in amino acid metabolism and xenobiotic biodegradation and metabolism.In addition,all 26 drug classes of antimicrobial resistance genes were detected in the COVID-19 group,and were significantly enriched in critical cases.In conclusion,we found that oropharyngeal microbiota alterations and functional differences were associated with COVID-19 severity.
文摘The temporal and spatial distribution of microfracturing activity in two kinds of granite under triaxial compression has been studied by using a new acoustic emission system. For Inada granite, there is no clear clustering of acoustic emission events in time and space, thus it is difficult to exactly deduce the time and position of the major fracturing. While for Mayet granite,acoustic emission events are clustered in time and space, so the time and position of the major fracturing can be exactly predicted according to microfracturing process. Such a difference may result from the difference in deformation mode caused by different rock structures.