期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Design of semi-tensor product-based kernel function for SVM nonlinear classification 被引量:2
1
作者 shengli xue Lijun Zhang Zeyu Zhu 《Control Theory and Technology》 EI CSCD 2022年第4期456-464,共9页
The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomi... The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomial kernel function.In this paper,we propose a new kind of polynomial kernel functions,called semi-tensor product kernel(STP-kernel),for an SVM nonlinear classification problem by semi-tensor product of matrix(STP)theory.We have shown the existence of the STP-kernel function and verified that it is just a polynomial kernel.In addition,we have shown the existence of the reproducing kernel Hilbert space(RKHS)associated with the STP-kernel function.Compared to the existing methods,it is much easier to construct the nonlinear feature mapping for an SVM nonlinear classification problem via an STP operator. 展开更多
关键词 SVM Semi-tensor product STP-kernel NONLINEAR CLASSIFICATION Reproducing kernel Hilbert space(RKHS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部