The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomi...The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomial kernel function.In this paper,we propose a new kind of polynomial kernel functions,called semi-tensor product kernel(STP-kernel),for an SVM nonlinear classification problem by semi-tensor product of matrix(STP)theory.We have shown the existence of the STP-kernel function and verified that it is just a polynomial kernel.In addition,we have shown the existence of the reproducing kernel Hilbert space(RKHS)associated with the STP-kernel function.Compared to the existing methods,it is much easier to construct the nonlinear feature mapping for an SVM nonlinear classification problem via an STP operator.展开更多
基金supported by the National Natural Science Foundation of China(61573288)the Key Programs in Shaanxi Province of China(2021JZ-12)and the Yulin Science and Technology Bureau project(2019-89-2).
文摘The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomial kernel function.In this paper,we propose a new kind of polynomial kernel functions,called semi-tensor product kernel(STP-kernel),for an SVM nonlinear classification problem by semi-tensor product of matrix(STP)theory.We have shown the existence of the STP-kernel function and verified that it is just a polynomial kernel.In addition,we have shown the existence of the reproducing kernel Hilbert space(RKHS)associated with the STP-kernel function.Compared to the existing methods,it is much easier to construct the nonlinear feature mapping for an SVM nonlinear classification problem via an STP operator.