期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Structural Characterization and Antigenicity of the S Protein of SARS-CoV 被引量:5
1
作者 JingxiangLi ChunqingLuo +18 位作者 YajunDeng YujunHan LingTang JingWang JiaJi JiaYe FanboJiang ZhaoXu WeiTong WeiWei QingrunZhang ShengbinLi WeiLi HongyanLi YudongLi WeiDong JianWang shenglibi HuanmingYaug 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2003年第2期108-117,共10页
The corona-like spikes or peplomers on the surface of the virion under electronicmicroscope are the most striking features of coronaviruses. The S (spike) proteinis the largest structural protein, with 1,255 amino aci... The corona-like spikes or peplomers on the surface of the virion under electronicmicroscope are the most striking features of coronaviruses. The S (spike) proteinis the largest structural protein, with 1,255 amino acids, in the viral genome. Itsstructure can be divided into three regions: a long N-terminal region in the exte-rior, a characteristic transmembrane (TM) region, and a short C-terminus in theinterior of a virion. We detected fifteen substitutions of nucleotides by comparisonswith the seventeen published SARS-CoV genome sequences, eight (53.3%) of whichare non-synonymous mutations leading to amino acid alternations with predictedphysiochemical changes. The possible antigenic determinants of the S protein arepredicted, and the result is confirmed by ELISA (enzyme-linked immunosorbentassay) with synthesized peptides. Another profound finding is that three disulfidebonds are defined at the C-terminus with the N-terminus of the E (envelope) pro-tein, based on the typical sequence and positions, thus establishing the structuralconnection with these two important structural proteins, if confirmed. Phyloge-netic analysis reveals several conserved regions that might be potent drug targets. 展开更多
关键词 抗原性 S蛋白 SARS 冠状病毒 蛋白结构
原文传递
The Structure Analysis and Antigenicity Study of the N Protein of SARS-CoV 被引量:3
2
作者 JingqiangWang JiaJi +15 位作者 JiaYe XiaoqianZhao JieWen WeiLi JianfeiHu DaweiLi MinSun HaipanZeng YongwuHu XiangjunTian XuehaiTan NingzhiXu ChangqingZeng JianWang shenglibi HuanmingYang 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2003年第2期145-154,共10页
The Coronaviridae family is characterized by a nucleocapsid that is composed of thegenome RNA molecule in combination with the nucleoprotein (N protein) withina virion. The most striking physiochemical feature of the ... The Coronaviridae family is characterized by a nucleocapsid that is composed of thegenome RNA molecule in combination with the nucleoprotein (N protein) withina virion. The most striking physiochemical feature of the N protein of SARS-CoVis that it is a typical basic protein with a high predicted pI and high hydrophilicity,which is consistent with its function of binding to the ribophosphate backbone ofthe RNA molecule. The predicted high extent of phosphorylation of the N proteinon multiple candidate phosphorylation sites demonstrates that it would be relatedto important functions, such as RNA-binding and localization to the nucleolus ofhost cells. Subsequent study shows that there is an SR-rich region in the N proteinand this region might be involved in the protein-protein interaction. The abundantantigenic sites predicted in the N protein, as well as experimental evidence withsynthesized polypeptides, indicate that the N protein is one of the major antigensof the SARS-CoV. Compared with other viral structural proteins, the low variationrate of the N protein with regards to its size suggests its importance to the survivalof the virus. 展开更多
关键词 SARS 冠状病毒 N蛋白 结构分析 抗原性
原文传递
The E Protein Is a Multifunctional Membrane Protein of SARS-CoV 被引量:2
3
作者 QingfaWu YilinZhang +16 位作者 HongLu JingWang XimiaoHe YongLiu ChenYe WeiLin JianfeiHu JiaJi JingXu JiaYe YongwuHu WenjunChen SonggangLi JunWang JiauWang shenglibi HuanmingYang 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2003年第2期131-144,共14页
The E (envelope) protein is the smallest structural protein in all coronaviruses andis the only viral structural protein in which no variation has been detected. Weconducted genome sequencing and phylogenetic analyses... The E (envelope) protein is the smallest structural protein in all coronaviruses andis the only viral structural protein in which no variation has been detected. Weconducted genome sequencing and phylogenetic analyses of SARS-CoV. Based ongenome sequencing, we predicted the E protein is a transmembrane (TM) pro-tein characterized by a TM region with strong hydrophobicity and α-helix con-formation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in thecarboxyl-terminal region of the E protein that appears to form three disulfide bondswith another segment of corresponding cysteines in the carboxyl-terminus of the S(spike) protein. These bonds point to a possible structural association between theE and S proteins. Our phylogenetic analyses of the E protein sequences in all pub-lished coronaviruses place SARS-CoV in an independent group in Coronaviridaeand suggest a non-human animal origin. 展开更多
关键词 SARS 冠状病毒 膜蛋白 E蛋白
原文传递
Complete Genome Sequences of the SARS-CoV: the BJ Group (Isolates BJ01-BJ04) 被引量:1
4
作者 shenglibi E‘deQin +56 位作者 ZuyuanXu WeiLi JingWang YongWuHu YongLiu ShuminDuan JianfeiHu YujunHan JingXu YanLi YaoYi YongdongZhou WeiLin1 JieWen HongXu RuanLi ZizhangZhang HaiyanSun JinguiZhu ManYu BaochangFan QingfaWu WeiLin2 LinTang Bao’anYang GuoqingLi WenmingPeng WenjieLi TaoJiang YajunDeng BohuaLiu JianpingShi YongqiangDeng WeiWei HongLiu ZongzhongTong FengZhang YuZhang Cui‘eWang YuquanLi JiaYe YonghuaGan JiaJi XiaoyuLi XiangjunTian FushuangLu GangTan RuifuYang BinLiu SiqiLiu SonggangLi JunWang JianWang WuchunCao JunYu XiaopingDong HuanmingYang 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2003年第3期180-192,共13页
Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now... Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates B J01, B J02, B J03,and B J04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identifled from the BJ group, 32 are non-synonymous changes at the amino acid level.Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions. 展开更多
关键词 SARS 冠状病毒 全基因序列 北京株
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部