[Objectives]Aiming at the problems of high bolting rate,low yield and poor quality traits in the production of Angelica sinensis in Qinghai Province,this study investigated the effect of seeding quality on the growth,...[Objectives]Aiming at the problems of high bolting rate,low yield and poor quality traits in the production of Angelica sinensis in Qinghai Province,this study investigated the effect of seeding quality on the growth,yield and quality of A.sinensis.[Methods]Field experiments were carried out in five aspects,including different seedling shapes,different seedling sizes,different seedling ages,different seedling raising methods,and different seedling sources.The effect of seedling quality on the survival rate,bolting rate,main quality traits(root length,root fresh weight,root head thickness,root head length)and yield of A.sinensis was investigated.[Results]The seedlings,0.2-0.5 cm in diameter,100-110-d old,raised from three-year-old provenance in cultivated land by conventional method,were more preferable,and their survival rate was high,bolting rate was low,yield is high,and quality traits performed well.[Conclusions]The seedlings,0.2-0.5 cm in diameter,100-110-d old,raised from three-year-old provenance in cultivated land by conventional method,were more preferable,and their survival rate was high,bolting rate was low,yield is high,and quality traits performed well.展开更多
In this article, the index of imprimitivity of an irreducible nonnegative matrix in the famous PerronFrobenius theorem is studied within a more general framework, both in a more general tensor setting and in a more na...In this article, the index of imprimitivity of an irreducible nonnegative matrix in the famous PerronFrobenius theorem is studied within a more general framework, both in a more general tensor setting and in a more natural spectral symmetry perspective. A k-th order tensor has symmetric spectrum if the set of eigenvalues is symmetric under a group action with the group being a subgroup of the multiplicative group of k-th roots of unity. A sufficient condition, in terms of linear equations over the quotient ring, for a tensor possessing symmetric spectrum is given, which becomes also necessary when the tensor is nonnegative, symmetric and weakly irreducible, or an irreducible nonnegative matrix. Moreover, it is shown that for a weakly irreducible nonnegative tensor, the spectral symmetries are the same when either counting or ignoring multiplicities of the eigenvalues. In particular, the spectral symmetry(index of imprimitivity) of an irreducible nonnegative Sylvester matrix is completely resolved via characterizations with the indices of its positive entries. It is shown that the spectrum of an irreducible nonnegative Sylvester matrix can only be 1-symmetric or 2-symmetric, and the exact situations are fully described. With this at hand, the spectral symmetry of a nonnegative two-dimensional symmetric tensor with arbitrary order is also completely characterized.展开更多
Third order three-dimensional symmetric and traceless tensors play an important role in physics and tensor representation theory. A minimal integrity basis of a third order three-dimensional symmetric and traceless te...Third order three-dimensional symmetric and traceless tensors play an important role in physics and tensor representation theory. A minimal integrity basis of a third order three-dimensional symmetric and traceless tensor has four invariants with degrees two, four, six, and ten, respectively. In this paper, we show that any minimal integrity basis of a third order three-dimensional symmetric and traceless tensor is also an irreducible function basis of that tensor, and there is no syzygy relation among the four invariants of that basis, i.e., these four invariants are algebraically independent.展开更多
In this article, nondegeneracy of singular vector tuples, Z-eigenvectors and eigenvectors of tensors is studied, which have found many applications in diverse areas. The main results are:(ⅰ)each(Z-)eigenvector/singul...In this article, nondegeneracy of singular vector tuples, Z-eigenvectors and eigenvectors of tensors is studied, which have found many applications in diverse areas. The main results are:(ⅰ)each(Z-)eigenvector/singular vector tuple of a generic tensor is nondegenerate, and(ⅱ) each nonzero Zeigenvector/singular vector tuple of an orthogonally decomposable tensor is nondegenerate.展开更多
Biquadratic tensors play a central role in many areas of science.Examples include elastic tensor and Eshelby tensor in solid mechanics,and Riemannian curvature tensor in relativity theory.The singular values and spect...Biquadratic tensors play a central role in many areas of science.Examples include elastic tensor and Eshelby tensor in solid mechanics,and Riemannian curvature tensor in relativity theory.The singular values and spectral norm of a general third order tensor are the square roots of the M-eigenvalues and spectral norm of a biquadratic tensor,respectively.The tensor product operation is closed for biquadratic tensors.All of these motivate us to study biquadratic tensors,biquadratic decomposition,and norms of biquadratic tensors.We show that the spectral norm and nuclear norm for a biquadratic tensor may be computed by using its biquadratic structure.Then,either the number of variables is reduced,or the feasible region can be reduced.We show constructively that for a biquadratic tensor,a biquadratic rank-one decomposition always exists,and show that the biquadratic rank of a biquadratic tensor is preserved under an independent biquadratic Tucker decomposition.We present a lower bound and an upper bound of the nuclear norm of a biquadratic tensor.Finally,we define invertible biquadratic tensors,and present a lower bound for the product of the nuclear norms of an invertible biquadratic tensor and its inverse,and a lower bound for the product of the nuclear norm of an invertible biquadratic tensor,and the spectral norm of its inverse.展开更多
Eigenvalues of tensors play an increasingly important role in many aspects of applied mathematics. The characteristic polynomial provides one of a very few ways that shed lights on intrinsic understanding of the eigen...Eigenvalues of tensors play an increasingly important role in many aspects of applied mathematics. The characteristic polynomial provides one of a very few ways that shed lights on intrinsic understanding of the eigenvalues. It is known that the characteristic polynomial of a third order three dimensional tensor has a stunning expression with more than 20000 terms, thus prohibits an effective analysis. In this article, we are trying to make a concise representation of this characteristic polynomial in terms of certain basic determinants. With this, we can successfully write out explicitly the characteristic polynomial of a third order three dimensional tensor in a reasonable length. An immediate benefit is that we can compute out the third and fourth order traces of a third order three dimensional tensor symbolically, which is impossible in the literature.展开更多
基金Supported by Key Research and Development and Transformation Project of Qinghai Province(2018-SF-115)Special Fund for the Central Government to Guide Local Technological Development.
文摘[Objectives]Aiming at the problems of high bolting rate,low yield and poor quality traits in the production of Angelica sinensis in Qinghai Province,this study investigated the effect of seeding quality on the growth,yield and quality of A.sinensis.[Methods]Field experiments were carried out in five aspects,including different seedling shapes,different seedling sizes,different seedling ages,different seedling raising methods,and different seedling sources.The effect of seedling quality on the survival rate,bolting rate,main quality traits(root length,root fresh weight,root head thickness,root head length)and yield of A.sinensis was investigated.[Results]The seedlings,0.2-0.5 cm in diameter,100-110-d old,raised from three-year-old provenance in cultivated land by conventional method,were more preferable,and their survival rate was high,bolting rate was low,yield is high,and quality traits performed well.[Conclusions]The seedlings,0.2-0.5 cm in diameter,100-110-d old,raised from three-year-old provenance in cultivated land by conventional method,were more preferable,and their survival rate was high,bolting rate was low,yield is high,and quality traits performed well.
基金supported by National Natural Science Foundation of China(Grant No.11771328)Young Elite Scientists Sponsorship Program by Tianjin,and Innovation Research Foundation of Tianjin University(Grant Nos.2017XZC-0084 and 2017XRG-0015)。
文摘In this article, the index of imprimitivity of an irreducible nonnegative matrix in the famous PerronFrobenius theorem is studied within a more general framework, both in a more general tensor setting and in a more natural spectral symmetry perspective. A k-th order tensor has symmetric spectrum if the set of eigenvalues is symmetric under a group action with the group being a subgroup of the multiplicative group of k-th roots of unity. A sufficient condition, in terms of linear equations over the quotient ring, for a tensor possessing symmetric spectrum is given, which becomes also necessary when the tensor is nonnegative, symmetric and weakly irreducible, or an irreducible nonnegative matrix. Moreover, it is shown that for a weakly irreducible nonnegative tensor, the spectral symmetries are the same when either counting or ignoring multiplicities of the eigenvalues. In particular, the spectral symmetry(index of imprimitivity) of an irreducible nonnegative Sylvester matrix is completely resolved via characterizations with the indices of its positive entries. It is shown that the spectrum of an irreducible nonnegative Sylvester matrix can only be 1-symmetric or 2-symmetric, and the exact situations are fully described. With this at hand, the spectral symmetry of a nonnegative two-dimensional symmetric tensor with arbitrary order is also completely characterized.
基金National Natural Science Foundation of China (Grant Nos. 1177132& 11771405, 1157117& 11372124)Hong Kong Research Grant Council (Grant Nos. PolyU 15302114, 15300715, 15301716, 15300717).
文摘Third order three-dimensional symmetric and traceless tensors play an important role in physics and tensor representation theory. A minimal integrity basis of a third order three-dimensional symmetric and traceless tensor has four invariants with degrees two, four, six, and ten, respectively. In this paper, we show that any minimal integrity basis of a third order three-dimensional symmetric and traceless tensor is also an irreducible function basis of that tensor, and there is no syzygy relation among the four invariants of that basis, i.e., these four invariants are algebraically independent.
基金supported by National Natural Science Foundation of China(Grant No.11771328)Young Elite Scientists Sponsorship Program by Tianjin and the Natural Science Foundation of Zhejiang Province of China(Grant No.LD19A010002)。
文摘In this article, nondegeneracy of singular vector tuples, Z-eigenvectors and eigenvectors of tensors is studied, which have found many applications in diverse areas. The main results are:(ⅰ)each(Z-)eigenvector/singular vector tuple of a generic tensor is nondegenerate, and(ⅱ) each nonzero Zeigenvector/singular vector tuple of an orthogonally decomposable tensor is nondegenerate.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11771328,11871369)the Natural Science Foundation of Zhejiang Province,China(Grant No.LD19A010002).
文摘Biquadratic tensors play a central role in many areas of science.Examples include elastic tensor and Eshelby tensor in solid mechanics,and Riemannian curvature tensor in relativity theory.The singular values and spectral norm of a general third order tensor are the square roots of the M-eigenvalues and spectral norm of a biquadratic tensor,respectively.The tensor product operation is closed for biquadratic tensors.All of these motivate us to study biquadratic tensors,biquadratic decomposition,and norms of biquadratic tensors.We show that the spectral norm and nuclear norm for a biquadratic tensor may be computed by using its biquadratic structure.Then,either the number of variables is reduced,or the feasible region can be reduced.We show constructively that for a biquadratic tensor,a biquadratic rank-one decomposition always exists,and show that the biquadratic rank of a biquadratic tensor is preserved under an independent biquadratic Tucker decomposition.We present a lower bound and an upper bound of the nuclear norm of a biquadratic tensor.Finally,we define invertible biquadratic tensors,and present a lower bound for the product of the nuclear norms of an invertible biquadratic tensor and its inverse,and a lower bound for the product of the nuclear norm of an invertible biquadratic tensor,and the spectral norm of its inverse.
基金National Natural Science Foundation of China (Grant No. 11171328)Natural Science Foundation of Zhejiang Province, China (Grant No. LD19A010002)Innovation Research Foundation of Tianjin University (Grant Nos. 2017XZC-0084, 2017XRG-0015).
文摘Eigenvalues of tensors play an increasingly important role in many aspects of applied mathematics. The characteristic polynomial provides one of a very few ways that shed lights on intrinsic understanding of the eigenvalues. It is known that the characteristic polynomial of a third order three dimensional tensor has a stunning expression with more than 20000 terms, thus prohibits an effective analysis. In this article, we are trying to make a concise representation of this characteristic polynomial in terms of certain basic determinants. With this, we can successfully write out explicitly the characteristic polynomial of a third order three dimensional tensor in a reasonable length. An immediate benefit is that we can compute out the third and fourth order traces of a third order three dimensional tensor symbolically, which is impossible in the literature.