Symbiosis between soybean and rhizobia contributes to soybean yield and quality. Although secreted rhizobial type Ⅲ effectors are known to regulate infection and promote nitrogen fixation, much about them remains unk...Symbiosis between soybean and rhizobia contributes to soybean yield and quality. Although secreted rhizobial type Ⅲ effectors are known to regulate infection and promote nitrogen fixation, much about them remains unknown. Mutation of NopC, a type Ⅲ effector from Sinorhizobium fredii HH103, reduced nodule numbers and dry weights in 310 soybean accessions, and expression of NopC in soybean hairy roots promoted symbiosis. Based on observed differences in nodule traits between Suinong 14 and Zyd 00,006inoculated with HH103 and the NopC mutant, 11 QTL associated with rhizobia were identified in chromosome segment substitution lines(CSSLs) derived from Suinong 14 and Zyd 00006. Using chromosome fragment insertion, whole-genome sequencing of Suinong 14 and Zyd 00006, and qRT-PCR,Glyma.19G176300(GmCRP) was identified as a candidate gene associated with NopC, and GmCRP was found to be induced by NopC to positively regulate nodulation. SNPs located in the regulatory regions of GmCRP influenced its expression response to NopC, with SNPs contributing to nodulation having been selected during domestication. Our findings reveal the function of a soybean gene encoding a rhizobial type Ⅲ effector that contributes to symbiosis, and will facilitate the practical application of symbiotic nitrogen fixation in molecular breeding.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
[Objectives]To explore the evolution of the legal system of farmland protection and explore the rules and characteristics of policy development based on the theory and logic of institutional change since China's r...[Objectives]To explore the evolution of the legal system of farmland protection and explore the rules and characteristics of policy development based on the theory and logic of institutional change since China's reform and opening up,reveal the problems and deep-seated reasons of its legislation,clarify the direction of farmland protection in the new period,and solve the"non-agricultural""non-grain"and ecological problems of farmland.[Methods]Literature analysis and inductive deduction methods were used.[Results]The evolution of the farmland protection legal system has gone through the process of"national consciousness-policy guidelines-institutional system",the change from"single subject to multiple subjects";change from the use of"one-way administrative means to coordinated use of administrative,economic and technical means".The practical problems of the farmland protection legal system are mainly due to the insufficient systematization of the farmland protection legal system itself,the generalization of quantity protection,the transformation of quality protection,and the absence of ecological protection.[Conclusions]It is recommended to improve the existing farmland protection legal system from the establishment of the Farmland Protection Law,the improvement of the farmland protection public participation mechanism and supervision mechanism,the establishment of the farmland quality construction and improvement system,the differentiated farmland occupation and supplementation balance system,and the ecological restoration system.展开更多
Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of opt...Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging(OFI) probe integration with other imaging modalities such as X-ray computed tomography(CT), magnetic resonance imaging(MRI), positron emission tomography(PET), single-photon emission computed tomography(SPECT), and photoacoustic imaging(PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.展开更多
We propose a fundamental theorem for eco-environmental surface modelling(FTEEM) in order to apply it into the fields of ecology and environmental science more easily after the fundamental theorem for Earth’s surface ...We propose a fundamental theorem for eco-environmental surface modelling(FTEEM) in order to apply it into the fields of ecology and environmental science more easily after the fundamental theorem for Earth’s surface system modeling(FTESM). The Beijing-Tianjin-Hebei(BTH) region is taken as a case area to conduct empirical studies of algorithms for spatial upscaling, spatial downscaling, spatial interpolation, data fusion and model-data assimilation, which are based on high accuracy surface modelling(HASM), corresponding with corollaries of FTEEM. The case studies demonstrate how eco-environmental surface modelling is substantially improved when both extrinsic and intrinsic information are used along with an appropriate method of HASM. Compared with classic algorithms, the HASM-based algorithm for spatial upscaling reduced the root-meansquare error of the BTH elevation surface by 9 m. The HASM-based algorithm for spatial downscaling reduced the relative error of future scenarios of annual mean temperature by 16%. The HASM-based algorithm for spatial interpolation reduced the relative error of change trend of annual mean precipitation by 0.2%. The HASM-based algorithm for data fusion reduced the relative error of change trend of annual mean temperature by 70%. The HASM-based algorithm for model-data assimilation reduced the relative error of carbon stocks by 40%. We propose five theoretical challenges and three application problems of HASM that need to be addressed to improve FTEEM.展开更多
基金supported by the China Postdoctoral Science Foundation(2020M681072)the National Natural Science Foundation of China(32072014,U20A2027,and 31771882)‘Hundred-thousand and million project of Heilongjiang province for engineering and technology science’soybean breeding technology innovation and new cultivar breeding(2019ZX16B01).
文摘Symbiosis between soybean and rhizobia contributes to soybean yield and quality. Although secreted rhizobial type Ⅲ effectors are known to regulate infection and promote nitrogen fixation, much about them remains unknown. Mutation of NopC, a type Ⅲ effector from Sinorhizobium fredii HH103, reduced nodule numbers and dry weights in 310 soybean accessions, and expression of NopC in soybean hairy roots promoted symbiosis. Based on observed differences in nodule traits between Suinong 14 and Zyd 00,006inoculated with HH103 and the NopC mutant, 11 QTL associated with rhizobia were identified in chromosome segment substitution lines(CSSLs) derived from Suinong 14 and Zyd 00006. Using chromosome fragment insertion, whole-genome sequencing of Suinong 14 and Zyd 00006, and qRT-PCR,Glyma.19G176300(GmCRP) was identified as a candidate gene associated with NopC, and GmCRP was found to be induced by NopC to positively regulate nodulation. SNPs located in the regulatory regions of GmCRP influenced its expression response to NopC, with SNPs contributing to nodulation having been selected during domestication. Our findings reveal the function of a soybean gene encoding a rhizobial type Ⅲ effector that contributes to symbiosis, and will facilitate the practical application of symbiotic nitrogen fixation in molecular breeding.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
基金Supported by National Natural Science Foundation of China(41771565).
文摘[Objectives]To explore the evolution of the legal system of farmland protection and explore the rules and characteristics of policy development based on the theory and logic of institutional change since China's reform and opening up,reveal the problems and deep-seated reasons of its legislation,clarify the direction of farmland protection in the new period,and solve the"non-agricultural""non-grain"and ecological problems of farmland.[Methods]Literature analysis and inductive deduction methods were used.[Results]The evolution of the farmland protection legal system has gone through the process of"national consciousness-policy guidelines-institutional system",the change from"single subject to multiple subjects";change from the use of"one-way administrative means to coordinated use of administrative,economic and technical means".The practical problems of the farmland protection legal system are mainly due to the insufficient systematization of the farmland protection legal system itself,the generalization of quantity protection,the transformation of quality protection,and the absence of ecological protection.[Conclusions]It is recommended to improve the existing farmland protection legal system from the establishment of the Farmland Protection Law,the improvement of the farmland protection public participation mechanism and supervision mechanism,the establishment of the farmland quality construction and improvement system,the differentiated farmland occupation and supplementation balance system,and the ecological restoration system.
基金supported by the National Science Foundation of China(No.21577037 to Kaiyan Lou)East China University of Science and Technology(Grant No.YC0140101,start-up funds to Wei Wang)
文摘Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging(OFI) probe integration with other imaging modalities such as X-ray computed tomography(CT), magnetic resonance imaging(MRI), positron emission tomography(PET), single-photon emission computed tomography(SPECT), and photoacoustic imaging(PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41930647, 41590844, 41421001 & 41971358)the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA20030203)+1 种基金the Innovation Project of LREIS (Grant No. O88RA600YA)the Biodiversity Investigation, Observation and Assessment Program (2019–2023) of the Ministry of Ecology and Environment of China。
文摘We propose a fundamental theorem for eco-environmental surface modelling(FTEEM) in order to apply it into the fields of ecology and environmental science more easily after the fundamental theorem for Earth’s surface system modeling(FTESM). The Beijing-Tianjin-Hebei(BTH) region is taken as a case area to conduct empirical studies of algorithms for spatial upscaling, spatial downscaling, spatial interpolation, data fusion and model-data assimilation, which are based on high accuracy surface modelling(HASM), corresponding with corollaries of FTEEM. The case studies demonstrate how eco-environmental surface modelling is substantially improved when both extrinsic and intrinsic information are used along with an appropriate method of HASM. Compared with classic algorithms, the HASM-based algorithm for spatial upscaling reduced the root-meansquare error of the BTH elevation surface by 9 m. The HASM-based algorithm for spatial downscaling reduced the relative error of future scenarios of annual mean temperature by 16%. The HASM-based algorithm for spatial interpolation reduced the relative error of change trend of annual mean precipitation by 0.2%. The HASM-based algorithm for data fusion reduced the relative error of change trend of annual mean temperature by 70%. The HASM-based algorithm for model-data assimilation reduced the relative error of carbon stocks by 40%. We propose five theoretical challenges and three application problems of HASM that need to be addressed to improve FTEEM.