The acoustic bottom backscattering strength was measured at the frequency range of 6–24 kHz on a typical sandy bottom in the South Yellow Sea by using omnidirectional sources and omnidirectional receiving hydrophones...The acoustic bottom backscattering strength was measured at the frequency range of 6–24 kHz on a typical sandy bottom in the South Yellow Sea by using omnidirectional sources and omnidirectional receiving hydrophones. In the experiment, by avoiding disturbances due to scattering off the sea surface and satisfying the far-field condition, we obtained values of acoustic bottom backscattering strength ranging from –41.1 to –24.4 dB within a grazing angle range of 18°–80°. In the effective range of grazing angles, the acoustic scattering strength generally increases with an increase in the grazing angles, but trends of the variation were distinct in different ranges of frequency, which reflect different scattering mechanisms. The frequency dependence of bottom backscattering strength is generally characterized by a positive correlation in the entire frequency range of 6–24 kHz at the grazing angles of 20°, 40° and 60° with the linear regression slopes of 0.222 9 dB/kHz, 0.513 0 dB/kHz and 0.174 6 dB/kHz, respectively. At the largest grazing angle of 80°, the acoustic backscattering strength exhibits no evident frequency dependence.展开更多
Sea-surface acoustic backscattering measurements at moderate to high frequencies were performed in the shallow water of the south Yellow Sea, using omnidirectional spherical sources and omnidirectional hydrophones. Se...Sea-surface acoustic backscattering measurements at moderate to high frequencies were performed in the shallow water of the south Yellow Sea, using omnidirectional spherical sources and omnidirectional hydrophones. Sea-surface backscattering data for frequencies in the 6–25 k Hz range and wind speeds of(3.0±0.5)and(4.5±1.0) m/s were obtained from two adjacent experimental sites, respectively. Computation of sea-surface backscattering strength using bistatic transducer is described. Finally, we calculated sea-surface backscattering strengths at grazing angles in the range of 16°–85°. We find that the measured backscattering strengths agree reasonably well with those predicted by using second order small-roughness perturbation approximation method with "PM" roughness spectrum for all frequencies at grazing angles ranged from 40° to 80°. The backscattering strengths varied slightly at grazing angles of 16°–40°, and were much stronger than roughness scattering. It is speculated that scattering from bubbles dominates the backscattering strengths at high wind speeds and small grazing angles. At the same frequencies and moderate to high grazing angles, the results show that the backscattering strengths at a wind speed of(4.5±1.0) m/s were approximately 5 d B higher than those at a wind speed of(3.0±0.5) m/s. However, the discrepancies of backscattering strength at low grazing angles were more than 10 d B. Furthermore the backscattering strengths exhibited no significant frequency dependence at 3 m/s wind speed. At a wind speed of 4.5 m/s, the scattering strengths increased at low grazing angles but decreased at high grazing angles with increasing grazing angle.展开更多
基金The Opening Fund of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.QNLM2016ORP0209the National Natural Science Foundation of China under contract Nos 41330965,41676055 and 41527809the Taishan Scholar Project Funding under contract No.tspd20161007
文摘The acoustic bottom backscattering strength was measured at the frequency range of 6–24 kHz on a typical sandy bottom in the South Yellow Sea by using omnidirectional sources and omnidirectional receiving hydrophones. In the experiment, by avoiding disturbances due to scattering off the sea surface and satisfying the far-field condition, we obtained values of acoustic bottom backscattering strength ranging from –41.1 to –24.4 dB within a grazing angle range of 18°–80°. In the effective range of grazing angles, the acoustic scattering strength generally increases with an increase in the grazing angles, but trends of the variation were distinct in different ranges of frequency, which reflect different scattering mechanisms. The frequency dependence of bottom backscattering strength is generally characterized by a positive correlation in the entire frequency range of 6–24 kHz at the grazing angles of 20°, 40° and 60° with the linear regression slopes of 0.222 9 dB/kHz, 0.513 0 dB/kHz and 0.174 6 dB/kHz, respectively. At the largest grazing angle of 80°, the acoustic backscattering strength exhibits no evident frequency dependence.
基金The National Natural Science Foundation of China under contract Nos 41330965 and 41527809the Opening Fund of Qingdao National Laboratory for Marine Science and Technology under contract No. QNLM2016ORP0209the Taishan Scholar Project Funding under contract No. tspd20161007.
文摘Sea-surface acoustic backscattering measurements at moderate to high frequencies were performed in the shallow water of the south Yellow Sea, using omnidirectional spherical sources and omnidirectional hydrophones. Sea-surface backscattering data for frequencies in the 6–25 k Hz range and wind speeds of(3.0±0.5)and(4.5±1.0) m/s were obtained from two adjacent experimental sites, respectively. Computation of sea-surface backscattering strength using bistatic transducer is described. Finally, we calculated sea-surface backscattering strengths at grazing angles in the range of 16°–85°. We find that the measured backscattering strengths agree reasonably well with those predicted by using second order small-roughness perturbation approximation method with "PM" roughness spectrum for all frequencies at grazing angles ranged from 40° to 80°. The backscattering strengths varied slightly at grazing angles of 16°–40°, and were much stronger than roughness scattering. It is speculated that scattering from bubbles dominates the backscattering strengths at high wind speeds and small grazing angles. At the same frequencies and moderate to high grazing angles, the results show that the backscattering strengths at a wind speed of(4.5±1.0) m/s were approximately 5 d B higher than those at a wind speed of(3.0±0.5) m/s. However, the discrepancies of backscattering strength at low grazing angles were more than 10 d B. Furthermore the backscattering strengths exhibited no significant frequency dependence at 3 m/s wind speed. At a wind speed of 4.5 m/s, the scattering strengths increased at low grazing angles but decreased at high grazing angles with increasing grazing angle.