The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhe...The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm^(-1);and 33.9μW·mK^(-1),respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK^(-1);at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.展开更多
Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device pe...Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device performance,such as perovskite solar cells(PSCs).Herein,we successfully enhanced the electric properties and morphology of phenyl-C61-butyric acid methyl ester(PCBM)by n-doping it with a benzimidazoline derivative,9-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-julolidine(JLBI-H)via a solution process.We found the n-doping can not only improve the conductivity and optimize the band alignment but also enable the PCBM to have a constantly strong charge extraction ability in a wide temperature from 173 to 373 K,which guarantees a stable photovoltaic performance of the corresponding PSCs under a wide range of operating temperatures.With the JLBI-H-doped PCBM,we improved the efficiency from 17.9%to 19.8%,along with enhanced stability of the nonencapsulated devices following the aging protocol of ISOS-D-1.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.Q2019YFE0107200)。
文摘The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm^(-1);and 33.9μW·mK^(-1),respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK^(-1);at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.
基金National Key Research and Development Plan,Grant/Award Number:2019YFE0107200National Natural Science Foundation of China,Grant/Award Numbers:22075221,52002302,91963209+4 种基金Key Research and Development Project of Shanxi Province,Grant/Award Number:202202060301003Hubei Provincial Natural Science Foundation of China,Grant/Award Number:2022CFB1000Knowledge Innovation Program of Wuhan-Shuguang Project,Grant/Award Number:2023010201020367State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology),Grant/Award Number:2022-KF-17Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science,ICT,and Future Planning,Grant/Award Numbers:2019K1A3A1A61091347,2021M3H4A1A02051234。
文摘Fullerene derivatives are highly attractive materials in solar cells,organic thermoelectrics,and other devices.However,the intrinsic low electron mobility and electrical conductivity restrict their potential device performance,such as perovskite solar cells(PSCs).Herein,we successfully enhanced the electric properties and morphology of phenyl-C61-butyric acid methyl ester(PCBM)by n-doping it with a benzimidazoline derivative,9-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-julolidine(JLBI-H)via a solution process.We found the n-doping can not only improve the conductivity and optimize the band alignment but also enable the PCBM to have a constantly strong charge extraction ability in a wide temperature from 173 to 373 K,which guarantees a stable photovoltaic performance of the corresponding PSCs under a wide range of operating temperatures.With the JLBI-H-doped PCBM,we improved the efficiency from 17.9%to 19.8%,along with enhanced stability of the nonencapsulated devices following the aging protocol of ISOS-D-1.