Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell(IHC).This feature is believed to be critical for audit...Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell(IHC).This feature is believed to be critical for audition over a wide dynamic range,but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear.By means of three-dimensional electron microscopy and artificial intelligence-based algorithms,we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice.We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization.Moreover,our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole.展开更多
基金the National Natural Science Foundation of China(81800901)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(QD2018015)+2 种基金the Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32030200)the Bureau of International Cooperation,Chinese Academy of Sciences(153D31KYSB20170059).
文摘Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell(IHC).This feature is believed to be critical for audition over a wide dynamic range,but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear.By means of three-dimensional electron microscopy and artificial intelligence-based algorithms,we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice.We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization.Moreover,our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole.