The development of intelligent connected technology has brought opportunities and challenges to the design of energy management strategies for hybrid electric vehicles.First,to achieve car-following in a connected env...The development of intelligent connected technology has brought opportunities and challenges to the design of energy management strategies for hybrid electric vehicles.First,to achieve car-following in a connected environment while reducing vehicle fuel consumption,a power split hybrid electric vehicle was used as the research object,and a mathematical model including engine,motor,generator,battery and vehicle longitudinal dynamics is established.Second,with the goal of vehicle energy saving,a layered optimization framework for hybrid electric vehicles in a networked environment is proposed.The speed planning problem is established in the upper-level controller,and the optimized speed of the vehicle is obtained and input to the lower-level controller.Furthermore,after the lower-level controller reaches the optimized speed,it distributes the torque among the energy sources of the hybrid electric vehicle based on the equivalent consumption minimum strategy.The simulation results show that the proposed layered control framework can achieve good car-following performance and obtain good fuel economy.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62111530196)and the Technology Development Program of Jilin Province(Grant No.20200501010G X).
文摘The development of intelligent connected technology has brought opportunities and challenges to the design of energy management strategies for hybrid electric vehicles.First,to achieve car-following in a connected environment while reducing vehicle fuel consumption,a power split hybrid electric vehicle was used as the research object,and a mathematical model including engine,motor,generator,battery and vehicle longitudinal dynamics is established.Second,with the goal of vehicle energy saving,a layered optimization framework for hybrid electric vehicles in a networked environment is proposed.The speed planning problem is established in the upper-level controller,and the optimized speed of the vehicle is obtained and input to the lower-level controller.Furthermore,after the lower-level controller reaches the optimized speed,it distributes the torque among the energy sources of the hybrid electric vehicle based on the equivalent consumption minimum strategy.The simulation results show that the proposed layered control framework can achieve good car-following performance and obtain good fuel economy.