期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Systematic identification of CRISPR off-target effects by CROss-seq
1
作者 Yan Li shengyao zhi +7 位作者 Tong Wu Hong-Xuan Chen Rui Kang Dong-Zhao Mai Zhou Songyang Chuan He Puping Liang Guan-Zheng Luo 《Protein & Cell》 SCIE CSCD 2023年第4期299-303,共5页
DearEditor,The CRISPR-mediated genome editing tools,including nucleases,base editors(ABE/CBE),transposases/recombinases,and prime editor(PE),have been extensively applied in basic and clinical researches,although the ... DearEditor,The CRISPR-mediated genome editing tools,including nucleases,base editors(ABE/CBE),transposases/recombinases,and prime editor(PE),have been extensively applied in basic and clinical researches,although the off-target effect remains a major concern(Anzalone et al.,2020).Recently,various methods have been developed to assess the specificity and accuracy of different tools(Zhang et al.,2021),yet each method is designed for limited editing systems,and none of them can simultaneously detect off-target sites in vivo and in vitro.A versatile method for profiling genome-wide off-target effects of various tools remains lacking. 展开更多
关键词 CRISPR VERSATILE EDITOR
原文传递
Cost-effective generation of A-to-G mutant mice by zygote electroporation of adenine base editor ribonucleoproteins 被引量:1
2
作者 Hongwei Sun shengyao zhi +6 位作者 Guifang Wu Guanglan Wu Tianqi Cao Hu Hao Zhou Songyang Puping Liang Junjiu Huang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2020年第6期337-340,共4页
More than 32,000 pathogenic single nucleotide polymorphisms(SNPs)have been identified in the human genome(Gaudelli et al.,2017).Genetically modified mice with pathogenic SNPs are good models for studies of disease pat... More than 32,000 pathogenic single nucleotide polymorphisms(SNPs)have been identified in the human genome(Gaudelli et al.,2017).Genetically modified mice with pathogenic SNPs are good models for studies of disease pathogenesis and the development of new therapeutics.Accordingly,an efficient,high-throughput method for the generation of mouse models with SNPs is needed. 展开更多
关键词 al. EDITOR pathogenesis
原文传递
Effective and precise adenine base editing n mouse zygotes 被引量:6
3
作者 Puping Liang Hongwei Sun +10 位作者 Xiya Zhang Xiaowei Xie Jinran Zhang Yaofu Bai Xueling Ouyang shengyao zhi Yuanyan Xiong Wenbin Ma Dan Liu Junjiu Huang Zhou Songyang 《Protein & Cell》 SCIE CAS CSCD 2018年第9期808-813,共6页
Dear Editor, Many human genetic diseases are caused by pathogenic single nucleotide mutations. Animal models are often used to study these diseases where the pathogenic point mutations are created and/or corrected thr... Dear Editor, Many human genetic diseases are caused by pathogenic single nucleotide mutations. Animal models are often used to study these diseases where the pathogenic point mutations are created and/or corrected through gene editing (e.g., the CRISPP-JCas9 system) (Komor et al., 2017; Liang et al., 2017). CRISPR/Cas9-mediated gene editing depends on DNA double-strand breaks (DSBs), which can be of low efficiency and lead to indels and off-target cleavage (Kim et al., 2016). We and others have shown that base editors (BEs) may represent an attractive alternative for disease mouse model generation (Liang et al., 2017; Kim et al., 2017). Compared to CRISPR/ Cas9, cytidine base editors (CBEs) can generate C·G to T·A mutations in mouse zygotes without activating DSB repair pathways (Liang et al., 2017; Kim et al., 2017; Komor et al., 2016). In addition, CBEs showed much lower off-targets than CRISPR]Cas9 (Kim et al., 2017), making the editing process potentially safer and more controllable. Recently, adenine base editors (ABEs) that were developed from the tRNA- specific adenosine deaminase (TADA) of Escherichia coli were also reported (Gaudelli et al., 2017). As a RNA-guided programmable adenine deaminase, ABE can catalyze the conversion of A to I. Following DNA replication, base I is replaced by G, resulting in A·T to G·C conversion (Gaudelli et al., 2017; Hu et al., 2018). The development of ABEs has clearly expanded the editing capacity and application of BEs. Here, we tested whether ABEs could effectively generate disease mouse models, and found high efficiency by ABEs in producing edited mouse zygotes and mice with single-nucleotide substitutions. 展开更多
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部