Al-Mg-Si-Sc alloys with different Mg/Si ratio(<1.73 in wt.% vs>1.73 in wt.%) and different grain size(coarse grains vs ultrafine grains) were prepared, which allowed to investigate the grain size-dependent Mg/Si...Al-Mg-Si-Sc alloys with different Mg/Si ratio(<1.73 in wt.% vs>1.73 in wt.%) and different grain size(coarse grains vs ultrafine grains) were prepared, which allowed to investigate the grain size-dependent Mg/Si ratio effect on the microstructural evolution and concomitantly on the hardness and electrical conductivity when subjected to aging at 200℃. In the coarse-grained Al-Mg-Sc-Sc alloys, the β" precipitation within the grain interior and also the precipitation hardening were highly dependent on the Mg/Si ratio,while the electrical conductivity was slightly affected by the Mg/Si ratio. A promoted β" precipitation was found in the case of Si excess(Mg/Si ratio <1.73), much greater than in the case of Mg excess(Mg/Si ratio>1.73). While in the ultrafine-grained Al-Mg-Si-Sc alloys, the electrical conductivity rather than the hardness was more sensitive to the Mg/Si ratio. The alloy with Si excess displayed electrical conductivity much higher than its counterpart with Mg excess. This is rationalized by the grain boundary precipitation promoted by Si, which reduced the solute atoms and precipitates within the grain interior. Age softening was found in the ultrafine-grained alloy with Si excess, but the ultrafine-grained alloy with Mg excess held the hardness almost unchanged during the aging. The hardness-conductivity correlation is comprehensively discussed by considering the coupling effect of Mg/Si ratio and grain size. A strategy to simultaneously increase the hardness/strength and electrical conductivity is proposed for the Al-Mg-SiSc alloys, based on present understanding of the predominant factors on strengthening and conductivity,respectively.展开更多
A significant size effect is found in the Al3 Sc dispersoid-mediated precipitation in an Al-Mg-Si-Sc alloy.When the Al3 Sc dispersoid size smaller than about 40 nm,β " precipitates nucleate directly on the coher...A significant size effect is found in the Al3 Sc dispersoid-mediated precipitation in an Al-Mg-Si-Sc alloy.When the Al3 Sc dispersoid size smaller than about 40 nm,β " precipitates nucleate directly on the coherent dispersoids and grow by sacrificing the latter.While the dispersoid size greater than^40 nm,Q' and U2 phases are additionally produced that nucleate on the dislocations induced by the semi-/incoherent dispersoids.Mechanical and electrical properties are highly sensitive to the Al3 Sc dispersoid-tuned precipitation.The co-precipitation of β",Q' and U2 phases leads to an obvious improvement in hardness and simultaneously in electrical conductivity.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51771147)
文摘Al-Mg-Si-Sc alloys with different Mg/Si ratio(<1.73 in wt.% vs>1.73 in wt.%) and different grain size(coarse grains vs ultrafine grains) were prepared, which allowed to investigate the grain size-dependent Mg/Si ratio effect on the microstructural evolution and concomitantly on the hardness and electrical conductivity when subjected to aging at 200℃. In the coarse-grained Al-Mg-Sc-Sc alloys, the β" precipitation within the grain interior and also the precipitation hardening were highly dependent on the Mg/Si ratio,while the electrical conductivity was slightly affected by the Mg/Si ratio. A promoted β" precipitation was found in the case of Si excess(Mg/Si ratio <1.73), much greater than in the case of Mg excess(Mg/Si ratio>1.73). While in the ultrafine-grained Al-Mg-Si-Sc alloys, the electrical conductivity rather than the hardness was more sensitive to the Mg/Si ratio. The alloy with Si excess displayed electrical conductivity much higher than its counterpart with Mg excess. This is rationalized by the grain boundary precipitation promoted by Si, which reduced the solute atoms and precipitates within the grain interior. Age softening was found in the ultrafine-grained alloy with Si excess, but the ultrafine-grained alloy with Mg excess held the hardness almost unchanged during the aging. The hardness-conductivity correlation is comprehensively discussed by considering the coupling effect of Mg/Si ratio and grain size. A strategy to simultaneously increase the hardness/strength and electrical conductivity is proposed for the Al-Mg-SiSc alloys, based on present understanding of the predominant factors on strengthening and conductivity,respectively.
基金the financial support of the project from the National Natural Science Foundation of China (No. 51771147)。
文摘A significant size effect is found in the Al3 Sc dispersoid-mediated precipitation in an Al-Mg-Si-Sc alloy.When the Al3 Sc dispersoid size smaller than about 40 nm,β " precipitates nucleate directly on the coherent dispersoids and grow by sacrificing the latter.While the dispersoid size greater than^40 nm,Q' and U2 phases are additionally produced that nucleate on the dislocations induced by the semi-/incoherent dispersoids.Mechanical and electrical properties are highly sensitive to the Al3 Sc dispersoid-tuned precipitation.The co-precipitation of β",Q' and U2 phases leads to an obvious improvement in hardness and simultaneously in electrical conductivity.