期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experiment and parameter optimization of an automatic row following system for the traction beet combine harvester 被引量:1
1
作者 shenying wang Xuemei Gao +4 位作者 Zhaoyan You Baoliang Peng Huichang Wu Zhichao Hu Yongwei wang 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2023年第1期145-152,共8页
To improve the automation level and operation quality of China's beet harvester and reduce the loss due to damaged and missed excavation,this study used a self-developed sugar beet combine harvester and field simu... To improve the automation level and operation quality of China's beet harvester and reduce the loss due to damaged and missed excavation,this study used a self-developed sugar beet combine harvester and field simulation experiment platform,based on the single-factor bench test of the automatic row following system in the early stage,taking hydraulic flow A,spring preload B,and forward speed C which have significant influence on performance indices as test factors,and taking the missed excavation rate,breakage rate and reaction time as performance indices,the orthogonal experimental study on the parameter optimization of the three-factor and three-level automatic row following system with the first-order interaction of various factors was carried out.The results of the orthogonal experiments were analyzed using range analysis and variance analysis.The results showed that there were differences in the influence degree,factor priority order and first-order interaction,and the optimal parameter combination on each performance index.A weighted comprehensive scoring method was used to optimize and analyze each index.The optimal parameter combination of the overall operating performance of the automatic row following system was A 2B 2C 1,that is,the hydraulic flow was 25 L/min,the forward speed was 0.8 m/s,and the spring preload was 198 N.Under this combination,the response time was 0.496 s,the missed excavation rate was 2.35%,the breakage rate was 3.65%,and the operation quality was relatively good,which can meet the harvest requirements.The comprehensive optimization results were verified by field experiments with different ridge shapes and different planting patterns.The results showed that the mean values of the missed excavation rate of different planting patterns of conventional straight ridges and extremely large"S"ridges were 2.23%and 2.69%,respectively,and the maximum values were 2.39%and 2.98%,respectively;the average damage rates were 3.38%and 4.14%,and the maximum values were 3.58%and 4.48%,which meet the industry standards of sugar beet harvester operation quality.The overall adaptability of the automatic row following system is good.This study can provide a reference for research on automatic row following harvesting systems of sugar beets and other subsoil crop harvesters. 展开更多
关键词 BEET combine harvester traction type parameter optimization automatic row following
原文传递
Design and modelling of the full-feed peanut picking device with selfadaptive adjustable working clearance and feeding rate
2
作者 shenying wang Baoliang Peng +4 位作者 Huichang Wu Zhichao Hu Dawei Sun Yongwei wang Mingzhu Cao 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第6期97-106,共10页
To improve the declining performance of a full-feed peanut picking device or solve the mechanical failures that occur due to fluctuations in the feeding rate during operation,the 4HLJI-3000 peanut intelligent picking ... To improve the declining performance of a full-feed peanut picking device or solve the mechanical failures that occur due to fluctuations in the feeding rate during operation,the 4HLJI-3000 peanut intelligent picking combine harvester,which is a picking device with a self-adaptive adjustment of the working clearance,was developed as the research object in this study.Moreover,the key components,such as the picking roller,concave plate sieve and clearance adjustment mechanism of the concave plate sieve,were designed and analysed.Through the force analysis of the concave plate sieve of the picking device,the mathematical model of the concave plate sieve displacement of the picking device and feeding rate was obtained.The software system for monitoring,storing and analysing the concave plate sieve displacement of the picking device based on EasyBuilder Pro was designed,and the road monitoring test of displacement variation of concave plate sieve of the picking device and feeding rate was carried out.The linear function,power function,exponential function,quadratic function,compound function,logarithmic function and cubic function fitting were used to perform regression analysis of the test results by using IBM SPSS software.The results showed that the cubic function model had a higher fitting precision,and its determination coefficient was 0.992.Model verification experiments were proposed,and the results showed that the established cubic function model had a good accuracy.The absolute deviation rate ranged from 0 to 4.83%,and the average deviation rate was 2.22%.The deviation rate increased with an increasing feeding rate.The field experiments also proved that there was a cubic function relationship between the feeding rate and concave plate sieve displacement,the measured concave plate sieve displacement deviation rate ranged from 0 to 6.19%,and the average deviation rate was 2.73%compared with the calculated results.This study can provide a reference for the optimization design of the structure of full-feeding picking devices for peanuts and other crops and the intelligent measurement and control of the feeding rates. 展开更多
关键词 agricultural machinery PEANUT picking device feeding rate concave plate sieve displacement EasyBuilder
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部