In this note, we obtain a sharp volume estimate for complete gradient Ricci solitons with scalar curvature bounded below by a positive constant. Using Chen-Yokota's argument we obtain a local lower bound estimate of ...In this note, we obtain a sharp volume estimate for complete gradient Ricci solitons with scalar curvature bounded below by a positive constant. Using Chen-Yokota's argument we obtain a local lower bound estimate of the scalar curvature for the Ricci flow on complete manifolds. Consequently, one has a sharp estimate of the scalar curvature for expanding Ricci solitons; we also provide a direct (elliptic) proof of this sharp estimate. Moreover, if the scalar curvature attains its minimum value at some point, then the manifold is Einstein.展开更多
文摘In this note, we obtain a sharp volume estimate for complete gradient Ricci solitons with scalar curvature bounded below by a positive constant. Using Chen-Yokota's argument we obtain a local lower bound estimate of the scalar curvature for the Ricci flow on complete manifolds. Consequently, one has a sharp estimate of the scalar curvature for expanding Ricci solitons; we also provide a direct (elliptic) proof of this sharp estimate. Moreover, if the scalar curvature attains its minimum value at some point, then the manifold is Einstein.