Prestressed anchor cables are widely used for slope reinforcement,but the loss of prestress makes it difficult to guarantee the reinforcement effect.Anchor cable prestress degradation was considered as a stochastic pr...Prestressed anchor cables are widely used for slope reinforcement,but the loss of prestress makes it difficult to guarantee the reinforcement effect.Anchor cable prestress degradation was considered as a stochastic process,and the probability density function of this process was established using gamma theory and impact theory respectively.Combined with the failure threshold,the probability density was integrated to find the time-dependent reliability of the anchor cable.Based on the monitoring data of the prestress degradation of the anchor cable,parameters in the probability density function were solved by the maximum likelihood method,and the time-varying reliability and service life of the anchor cable were obtained analytically.The applicability of two degradation theories,gamma stochastic process and impact theory,was compared.The results showed that the probability density curves of both degradation models were normally distributed and the error of reliability results did not exceed 0.06.The life prediction results of the gamma stochastic process were closer to the actual life of 400 h than the 500 h of the impact theory,and the probability curves of the anchor cable life also indicated that the impact theory overestimated the service life probability of the anchor cable.Taking the anchor cable reinforcement within the slope of the Dagushan open-pit mine as an example,and the results verify the feasibility of using gamma theory to predict the degradation of anchor cables and provides theoretical support for prevention of the degradation of anchor cables in the slope of an open-pit mine under the action of external forces.展开更多
基金supported by the National Natural Science Foundation of China(No.52074292)National Key Research and Development Program(No.2017YFC1503103)。
文摘Prestressed anchor cables are widely used for slope reinforcement,but the loss of prestress makes it difficult to guarantee the reinforcement effect.Anchor cable prestress degradation was considered as a stochastic process,and the probability density function of this process was established using gamma theory and impact theory respectively.Combined with the failure threshold,the probability density was integrated to find the time-dependent reliability of the anchor cable.Based on the monitoring data of the prestress degradation of the anchor cable,parameters in the probability density function were solved by the maximum likelihood method,and the time-varying reliability and service life of the anchor cable were obtained analytically.The applicability of two degradation theories,gamma stochastic process and impact theory,was compared.The results showed that the probability density curves of both degradation models were normally distributed and the error of reliability results did not exceed 0.06.The life prediction results of the gamma stochastic process were closer to the actual life of 400 h than the 500 h of the impact theory,and the probability curves of the anchor cable life also indicated that the impact theory overestimated the service life probability of the anchor cable.Taking the anchor cable reinforcement within the slope of the Dagushan open-pit mine as an example,and the results verify the feasibility of using gamma theory to predict the degradation of anchor cables and provides theoretical support for prevention of the degradation of anchor cables in the slope of an open-pit mine under the action of external forces.