期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Gauss Sum of Index 4:(2)Non-cyclic Case 被引量:1
1
作者 Jing YANG shi xin luo Ke Qin FENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第3期833-844,共12页
Assume that m ≥ 2, p is a prime number, (m,p(p - 1)) = 1,-1 not belong to 〈p〉 belong to (Z/mZ)^* and [(Z/mZ)^*:〈p〉]=4.In this paper, we calculate the value of Gauss sum G(X)=∑x∈F^*x(x)ζp^T(x)... Assume that m ≥ 2, p is a prime number, (m,p(p - 1)) = 1,-1 not belong to 〈p〉 belong to (Z/mZ)^* and [(Z/mZ)^*:〈p〉]=4.In this paper, we calculate the value of Gauss sum G(X)=∑x∈F^*x(x)ζp^T(x) over Fq,where q=p^f,f=φ(m)/4,x is a multiplicative character of Fq and T is the trace map from Fq to Fp.Under our assumptions,G(x) belongs to the decomposition field K of p in Q(ζm) and K is an imaginary quartic abelian unmber field.When the Galois group Gal(K/Q) is cyclic,we have studied this cyclic case in anotyer paper:"Gauss sums of index four:(1)cyclic case"(accepted by Acta Mathematica Sinica,2003).In this paper we deal with the non-cyclic case. 展开更多
关键词 Gauss sum Stickelberger Theorem Davenport-Hawse formula class number of imaginary quadratic field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部