Composites Li1-xVxCryFe1-yPO4/C(x=0.01, 0.02; y = 0.01, 0.02) were synthesized by solid-state reaction method. The influence of the content of doping vanadium and chromium on the structure of Li1-xVxCryFe1-yPO4/C wa...Composites Li1-xVxCryFe1-yPO4/C(x=0.01, 0.02; y = 0.01, 0.02) were synthesized by solid-state reaction method. The influence of the content of doping vanadium and chromium on the structure of Li1-xVxCryFe1-yPO4/C was investigated by XRD, while the morphology of powders was observed by SEM. The investigation of the electrochemical performances showed that the Li0.99V0.01Cr0.02Fe0.98PO4/C material has a higher capacity. At 0.1 C discharging rate, it is capable of delivering reversible specific capacity of 163.8 mAh/g with fairly stable cycleability.展开更多
文摘Composites Li1-xVxCryFe1-yPO4/C(x=0.01, 0.02; y = 0.01, 0.02) were synthesized by solid-state reaction method. The influence of the content of doping vanadium and chromium on the structure of Li1-xVxCryFe1-yPO4/C was investigated by XRD, while the morphology of powders was observed by SEM. The investigation of the electrochemical performances showed that the Li0.99V0.01Cr0.02Fe0.98PO4/C material has a higher capacity. At 0.1 C discharging rate, it is capable of delivering reversible specific capacity of 163.8 mAh/g with fairly stable cycleability.