In this study,we developed a microfluidic paper analysis device(μPAD)for distance-based detection of Ag^(+)in water.TheμPAD was manufactured by wax printing method on filter paper.Then,a layer of gold nanoparticles(...In this study,we developed a microfluidic paper analysis device(μPAD)for distance-based detection of Ag^(+)in water.TheμPAD was manufactured by wax printing method on filter paper.Then,a layer of gold nanoparticles(AuNPs)was deposited and ascorbic acid was printed on the channel.In the detection,Ag^(+)was reduced by ascorbic acid and coated on the surface of the AuNPs on the channel,forming Au@Ag core/shell nanoparticles.Based on the capillary flow principle,diff erent concentrations of Ag^(+)formed diff erent distances of color ribbons.Thus,quantitative detection of Ag^(+)can be achieved by measuring the distance of the color ribbon.The detection limit of this method was as low as 1 mg·L^(-1)within 15 min and the interference of common metal ions in water can be eliminated.In conclusion,this method had successfully realized the leap from colorimetry to direct reading,realizing fast read and easy manipulation with low-cost.展开更多
基金supported by the Graduate Student Innovation Project of China University of Petroleum(East China)in 2020(No.YCX2020054)the financial support by the National Natural Science Foundation of China(No.21876206,21505157)+1 种基金the Key Fundamental Research Fund of Shandong Province(ZR2020ZD13)the Youth Innovation and Technology projects of Universities in Shandong Province(2020KJC007,ZR2020MB064)
文摘In this study,we developed a microfluidic paper analysis device(μPAD)for distance-based detection of Ag^(+)in water.TheμPAD was manufactured by wax printing method on filter paper.Then,a layer of gold nanoparticles(AuNPs)was deposited and ascorbic acid was printed on the channel.In the detection,Ag^(+)was reduced by ascorbic acid and coated on the surface of the AuNPs on the channel,forming Au@Ag core/shell nanoparticles.Based on the capillary flow principle,diff erent concentrations of Ag^(+)formed diff erent distances of color ribbons.Thus,quantitative detection of Ag^(+)can be achieved by measuring the distance of the color ribbon.The detection limit of this method was as low as 1 mg·L^(-1)within 15 min and the interference of common metal ions in water can be eliminated.In conclusion,this method had successfully realized the leap from colorimetry to direct reading,realizing fast read and easy manipulation with low-cost.