期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe2 被引量:1
1
作者 Ji-Xiang Gong Jun Yang +8 位作者 Min Ge Yong-Jian Wang Dan-Dan Liang Lei Luo Xiu Yan shi-rui weng Li Pi Chang-Jin Zhang Wen-Ka Zhu 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期57-61,共5页
Non-stoiehiometry effect on the extreme magnetoresistanee is systematically investigated for the Weyl semimetal WTe2. Magnetoresistance and Hall resistivity are measured for the as-grown samples with a slight differen... Non-stoiehiometry effect on the extreme magnetoresistanee is systematically investigated for the Weyl semimetal WTe2. Magnetoresistance and Hall resistivity are measured for the as-grown samples with a slight difference in Te vacancies and the annealed samples with increased Te vacancies. The fits to a two-band model show that the magnetoresistanee is strongly dependent on the residual resistivity ratio (i.e., the degree of non-stoichiometry), which is eventually understood in terms of electron doping that not only breaks the balance between electron-type and hole-type carrier densities, but also reduces the average carrier mobility. Thus the compensation effect and ultrahigh mobility are probably the main driving force of the extreme magnetoresistance in WTe2. 展开更多
关键词 Te MR Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe2
下载PDF
Transforming a Two-Dimensional Layered Insulator into a Semiconductor or a Highly Conductive Metal through Transition Metal Ion Intercalation
2
作者 Xiu Yan Wei-Li Zhen +4 位作者 shi-rui weng Ran-Ran Zhang Wen-Ka Zhu Li Pi Chang-Jin Zhang 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第5期89-93,共5页
Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photorespo... Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices. 展开更多
关键词 Transforming a Two-Dimensional Layered Insulator into a Semiconductor or a Highly Conductive Metal through Transition Metal Ion Intercalation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部