Non-stoiehiometry effect on the extreme magnetoresistanee is systematically investigated for the Weyl semimetal WTe2. Magnetoresistance and Hall resistivity are measured for the as-grown samples with a slight differen...Non-stoiehiometry effect on the extreme magnetoresistanee is systematically investigated for the Weyl semimetal WTe2. Magnetoresistance and Hall resistivity are measured for the as-grown samples with a slight difference in Te vacancies and the annealed samples with increased Te vacancies. The fits to a two-band model show that the magnetoresistanee is strongly dependent on the residual resistivity ratio (i.e., the degree of non-stoichiometry), which is eventually understood in terms of electron doping that not only breaks the balance between electron-type and hole-type carrier densities, but also reduces the average carrier mobility. Thus the compensation effect and ultrahigh mobility are probably the main driving force of the extreme magnetoresistance in WTe2.展开更多
Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photorespo...Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.展开更多
基金Supported by the National Key R&D Program of China under Grant Nos 2016YFA0300404 and 2017YFA0403600the National Natural Science Foundation of China under Grant Nos 51603207,U1532267,11574288 and 11674327the Natural Science Foundation of Anhui Province under Grant No 1708085MA08
文摘Non-stoiehiometry effect on the extreme magnetoresistanee is systematically investigated for the Weyl semimetal WTe2. Magnetoresistance and Hall resistivity are measured for the as-grown samples with a slight difference in Te vacancies and the annealed samples with increased Te vacancies. The fits to a two-band model show that the magnetoresistanee is strongly dependent on the residual resistivity ratio (i.e., the degree of non-stoichiometry), which is eventually understood in terms of electron doping that not only breaks the balance between electron-type and hole-type carrier densities, but also reduces the average carrier mobility. Thus the compensation effect and ultrahigh mobility are probably the main driving force of the extreme magnetoresistance in WTe2.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2017YFA0403600 and 2016YFA0300404)the National Natural Science Foundation of China (Grant Nos.11874363,11974356 and U1932216)the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP002)。
文摘Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.