The synchronization of the spin Hall nano-oscillator(SHNO)device driven by the pure spin current has been investigated with micromagnetic simulations.It was found that the power spectra of nanowire-based SHNO devices ...The synchronization of the spin Hall nano-oscillator(SHNO)device driven by the pure spin current has been investigated with micromagnetic simulations.It was found that the power spectra of nanowire-based SHNO devices can be synchronized by varying the current flowing in the heavy metal(HM)layer.The synchronized signals have relatively high power and narrow linewidth,favoring the potential applications.We also found that the synchronized spectra are strongly dependent on both the number and length of nanowires.Moreover,a periodic modulation of power spectra can be obtained by introducing interfacial Dzyaloshinskii–Moriya interaction(iDMI).Our findings could enrich the current understanding of spin dynamics driven by the pure spin current.Further,it could help to design novel spintronic devices.展开更多
Though the quantum spin Hall effect(QSHE) in two-dimensional(2 D) crystals has been widely explored, the experimental realization of quantum transport properties is only limited to HgTe/CdTe or InAs/GaSb quantum w...Though the quantum spin Hall effect(QSHE) in two-dimensional(2 D) crystals has been widely explored, the experimental realization of quantum transport properties is only limited to HgTe/CdTe or InAs/GaSb quantum wells. Here we employ a tight-binding model on the basis of d(z^2), d(xy), and d(x^2-y^2) orbitals to propose QSHE in the triangular lattice, which are driven by a crossing of electronic bands at the Γ point. Remarkably, 2 D oxidized Mxenes W2 M2 C3 are ideal materials with nontrivial gap of 0.12 eV, facilitating room-temperature observations in experiments. We also find that the nontrivially topological properties of these materials are sensitive to the cooperative effect of the electron correlation and spin-orbit coupling. Due to the feasible exfoliation from its 3 D MAX phase, our work paves a new direction towards realizing QSHE with low dissipation.展开更多
基金the National Basic Research Program of Natural Science Foundation of China(Grant Nos.12074220,and 11627805)the 111 Project(Grant No.B13029)。
文摘The synchronization of the spin Hall nano-oscillator(SHNO)device driven by the pure spin current has been investigated with micromagnetic simulations.It was found that the power spectra of nanowire-based SHNO devices can be synchronized by varying the current flowing in the heavy metal(HM)layer.The synchronized signals have relatively high power and narrow linewidth,favoring the potential applications.We also found that the synchronized spectra are strongly dependent on both the number and length of nanowires.Moreover,a periodic modulation of power spectra can be obtained by introducing interfacial Dzyaloshinskii–Moriya interaction(iDMI).Our findings could enrich the current understanding of spin dynamics driven by the pure spin current.Further,it could help to design novel spintronic devices.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No ZR2018MA033the National Natural Science Foundation of China under Grant No 11274143
文摘Though the quantum spin Hall effect(QSHE) in two-dimensional(2 D) crystals has been widely explored, the experimental realization of quantum transport properties is only limited to HgTe/CdTe or InAs/GaSb quantum wells. Here we employ a tight-binding model on the basis of d(z^2), d(xy), and d(x^2-y^2) orbitals to propose QSHE in the triangular lattice, which are driven by a crossing of electronic bands at the Γ point. Remarkably, 2 D oxidized Mxenes W2 M2 C3 are ideal materials with nontrivial gap of 0.12 eV, facilitating room-temperature observations in experiments. We also find that the nontrivially topological properties of these materials are sensitive to the cooperative effect of the electron correlation and spin-orbit coupling. Due to the feasible exfoliation from its 3 D MAX phase, our work paves a new direction towards realizing QSHE with low dissipation.