A new application of metal organic framework (MOF) as a pseudo-capacitive material for supercapacitors is investigated. To this end, a simple nickel-based MOF, formulated Ni3(btc)2.12H2O, is synthesized via a hydr...A new application of metal organic framework (MOF) as a pseudo-capacitive material for supercapacitors is investigated. To this end, a simple nickel-based MOF, formulated Ni3(btc)2.12H2O, is synthesized via a hydrothermal reaction. As an electro-active material, such nickel-based MOF exhibits superior pseudo- capacitive behavior in KOH aqueous electrolyte with a high specific capacitance of 726 F g-1. Also, it displays good electrochemical stability with 94.6% of the initial capacitance over consecutive 1000 cycles. In addition, a simple asymmetric supercapacitor with a high energy density of 16.5 Wh kg-1 is successfully built using the nickel-based MOF as positive electrode and commercial activated carbon as negative electrode in KOH electrolyte.展开更多
基金supported by the National Natural Science Foundation of China(No.21203223)
文摘A new application of metal organic framework (MOF) as a pseudo-capacitive material for supercapacitors is investigated. To this end, a simple nickel-based MOF, formulated Ni3(btc)2.12H2O, is synthesized via a hydrothermal reaction. As an electro-active material, such nickel-based MOF exhibits superior pseudo- capacitive behavior in KOH aqueous electrolyte with a high specific capacitance of 726 F g-1. Also, it displays good electrochemical stability with 94.6% of the initial capacitance over consecutive 1000 cycles. In addition, a simple asymmetric supercapacitor with a high energy density of 16.5 Wh kg-1 is successfully built using the nickel-based MOF as positive electrode and commercial activated carbon as negative electrode in KOH electrolyte.