期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A low-melting-point metal doping strategy for the synthesis of small-sized intermetallic Pt_(5)Ce fuel cell catalysts
1
作者 Zi-Jun Zou shi-yi yin +4 位作者 Yao Tang Sheng-Liang Zhong Lei Wang Shi-Long Xu Hai-Wei Liang 《Nano Research》 SCIE EI CSCD 2024年第9期8112-8118,共7页
Carbon-supported platinum-lanthanum(Pt-Ln)intermetallic compound(IMC)nanoparticles with high activity and robust stability have been demonstrated as promising cathode catalysts for proton-exchange membrane fuel cells.... Carbon-supported platinum-lanthanum(Pt-Ln)intermetallic compound(IMC)nanoparticles with high activity and robust stability have been demonstrated as promising cathode catalysts for proton-exchange membrane fuel cells.However,the preparation of Pt-Ln IMC catalysts needs high-temperature annealing treatment that inevitably causes nanoparticle sintering,resulting in significant reduction of the electrochemical surface area and mass-based activity.Here,we prepare small-sized M-doped Pt_(5)Ce(M=Ga,Cd,and Sb)IMCs catalysts via a low-melting-point metal doping strategy.We speculate that the doping of low-melting-point metals can facilitate the generation of vacancies in the crystal lattice through thermal activation and thus reduce the kinetic barriers for the formation of intermetallic Pt_(5)Ce catalysts.The prepared Ga-doped Pt_(5)Ce catalyst exhibits a higher electrochemical active surface area(81 m^(2)·gPt^(-1))and a larger mass activity(0.45 A·mgPt^(-1)at 0.9 V)over the undoped Pt_(5)Ce and commercial Pt/C catalysts.In the membrane electrode assembly test,the Ga-doped Pt_(5)Ce cathode delivers a power density of 0.98 W·cm^(-2)at 0.67 V,along with a voltage loss of only 27 mV at 0.8 A·cm^(-2)at the end of accelerated stability test. 展开更多
关键词 P5Ce low-melting-point metal small-sized intermetallic compound catalysis fuel cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部