期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Approximate Continuous Top-k Query over Sliding Window 被引量:2
1
作者 Rui Zhu Bin Wang +2 位作者 shi-ying luo Xiao-Chun Yang Guo-Ren Wang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第1期93-109,共17页
Continuous top-k query over sliding window is a fundamental problem in database, which retrieves k objects with the highest scores when the window slides. Existing studies mainly adopt exact algorithms to tackle this ... Continuous top-k query over sliding window is a fundamental problem in database, which retrieves k objects with the highest scores when the window slides. Existing studies mainly adopt exact algorithms to tackle this type of queries, whose key idea is to maintain a subset of objects in the window, and try to retrieve answers from it. However, all the existing algorithms are sensitive to query parameters and data distribution. In addition, they suffer from expensive overhead for incremental maintenance, and thus cannot satisfy real-time requirement. In this paper, we define a novel query named (ε, δ)-approximate continuous top-κ query, which returns approximate answers for top-κ query. In order to efficiently support this query, we propose an efficient framework, named PABF (Probabilistic Approximate Based Framework), to support approximate top-κ query over sliding window. We firstly maintain a self-adaptive pruning value, which could filter out newly arrived objects who have a probability less than 1 - 5 of being a query result. For those objects that are not filtered, we combine them together, if the score difference among them is less than a threshold. To efficiently maintain these combined results, the framework PABF also proposes a multi-phase merging algorithm. Theoretical analysis indicates that even in the worst case, we require only logarithmic complexity for maintaining each candidate. 展开更多
关键词 continuous top-k query APPROXIMATE sliding window
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部