The fresh groundwater in the Loess Plateau serves as a major source of water required for the production and livelihood of local residents and is greatly significant for regional economic and social development and ec...The fresh groundwater in the Loess Plateau serves as a major source of water required for the production and livelihood of local residents and is greatly significant for regional economic and social development and ecological protection.This paper analyzes the hydrogeological conditions and groundwater characteristics in the Loess Plateau,expatiates on the types and distribution characteristics of the fresh groundwater in the plateau,and analyzes the influencing factors and mechanisms in the formation of the fresh groundwater in the plateau as a priority.Based on this,it summarizes the impacts of human activities and climatic change on the regional fresh groundwater.The groundwater in Loess Plateau features uneven temporal-spatial distribution,with the distribution space of the fresh groundwater closely relating to precipitation.The groundwater shows a distinct zoning pattern of hydrochemical types.It is fresh water in shallow parts and is salt water in deep parts overall,while the fresh water of exploration value is distributed only in a small range.The storage space and migration pathways of fresh groundwater in the loess area feature dual voids,vertical multilayers,variable structure,poor renewability,complex recharge processes,and distinct spatial differences.In general,the total dissolved solids(TDS)of the same type of groundwater tends to gradually increase from recharge areas to discharge areas.Conditions favorable for the formation of fresh groundwater in loess tablelands include the low content of soluble salts in strata,weak evaporation,and special hydrodynamic conditions.Owing to climate change and human activities,the resource quantity of regional fresh water tends to decrease overall,and the groundwater dynamic field and the recharge-discharge relationships between groundwater and surface water have changed in local areas.Human activities have a small impact on the water quality but slightly affect the water quantity of the groundwater in loess.展开更多
The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and h...The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and human living conditions.Based on the results of 1∶250000 regional hydrogeological surveys and previous researches,this study systematically investigates the circulation characteristics and resource properties of the groundwater as well as the evolution of the climate and ecological environment since the Quaternary in the Badain Jaran Desert by means of geophysical exploration,hydrogeological drilling,hydrogeochemistry,and isotopic tracing.The results are as follows.(1)The groundwater in the Badain Jaran Desert is mainly recharged through the infiltration of local precipitation and has poor renewability.The groundwater recharge in the desert was calculated to be 1.8684×10^(8)m^(3)/a using the water balance method.(2)The Badain Jaran Desert has experienced four humid stages since the Quaternary,namely MIS 13-15,MIS 5,MIS 3,and the Early‒Middle Holocene,but the climate in the desert has shown a trend towards aridity overall.The average annual temperature in the Badain Jaran Desert has significantly increased in the past 50 years.In detail,it has increased by about 2.5℃,with a higher rate in the south than in the north.Meanwhile,the precipitation amount has shown high spatial variability and the climate has shown a warming-drying trend in the past 50 years.(3)The lakes in the hinterland of the Badain Jaran Desert continuously shrank during 1973‒2015.However,the vegetation communities maintained a highly natural distribution during 2000‒2016,with the vegetation cover has increased overall.Accordingly,the Badain Jaran Desert did not show any notable expansion in that period.This study deepens the understanding of groundwater circulation and the climate and ecological evolution in the Badain Jaran Desert.It will provide a scientific basis for the rational exploitation of the groundwater resources and the ecological protection and restoration in the Badain Jaran Desert.展开更多
基金This work was funded by the project of China Geological Survey(DD20190333,DD20211563)the National Youth Science Foundation(41702280).
文摘The fresh groundwater in the Loess Plateau serves as a major source of water required for the production and livelihood of local residents and is greatly significant for regional economic and social development and ecological protection.This paper analyzes the hydrogeological conditions and groundwater characteristics in the Loess Plateau,expatiates on the types and distribution characteristics of the fresh groundwater in the plateau,and analyzes the influencing factors and mechanisms in the formation of the fresh groundwater in the plateau as a priority.Based on this,it summarizes the impacts of human activities and climatic change on the regional fresh groundwater.The groundwater in Loess Plateau features uneven temporal-spatial distribution,with the distribution space of the fresh groundwater closely relating to precipitation.The groundwater shows a distinct zoning pattern of hydrochemical types.It is fresh water in shallow parts and is salt water in deep parts overall,while the fresh water of exploration value is distributed only in a small range.The storage space and migration pathways of fresh groundwater in the loess area feature dual voids,vertical multilayers,variable structure,poor renewability,complex recharge processes,and distinct spatial differences.In general,the total dissolved solids(TDS)of the same type of groundwater tends to gradually increase from recharge areas to discharge areas.Conditions favorable for the formation of fresh groundwater in loess tablelands include the low content of soluble salts in strata,weak evaporation,and special hydrodynamic conditions.Owing to climate change and human activities,the resource quantity of regional fresh water tends to decrease overall,and the groundwater dynamic field and the recharge-discharge relationships between groundwater and surface water have changed in local areas.Human activities have a small impact on the water quality but slightly affect the water quantity of the groundwater in loess.
基金This research was funded by projects of the National Natural Science Foundation of China(41702285)the National Geological Survey Project(121201106000150093)+1 种基金the National Natural Science Foundation of China(41807214)the Fundamental Scientific Research Funds from the Chinese Academy of Geological Sciences(No.SK202011).
文摘The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and human living conditions.Based on the results of 1∶250000 regional hydrogeological surveys and previous researches,this study systematically investigates the circulation characteristics and resource properties of the groundwater as well as the evolution of the climate and ecological environment since the Quaternary in the Badain Jaran Desert by means of geophysical exploration,hydrogeological drilling,hydrogeochemistry,and isotopic tracing.The results are as follows.(1)The groundwater in the Badain Jaran Desert is mainly recharged through the infiltration of local precipitation and has poor renewability.The groundwater recharge in the desert was calculated to be 1.8684×10^(8)m^(3)/a using the water balance method.(2)The Badain Jaran Desert has experienced four humid stages since the Quaternary,namely MIS 13-15,MIS 5,MIS 3,and the Early‒Middle Holocene,but the climate in the desert has shown a trend towards aridity overall.The average annual temperature in the Badain Jaran Desert has significantly increased in the past 50 years.In detail,it has increased by about 2.5℃,with a higher rate in the south than in the north.Meanwhile,the precipitation amount has shown high spatial variability and the climate has shown a warming-drying trend in the past 50 years.(3)The lakes in the hinterland of the Badain Jaran Desert continuously shrank during 1973‒2015.However,the vegetation communities maintained a highly natural distribution during 2000‒2016,with the vegetation cover has increased overall.Accordingly,the Badain Jaran Desert did not show any notable expansion in that period.This study deepens the understanding of groundwater circulation and the climate and ecological evolution in the Badain Jaran Desert.It will provide a scientific basis for the rational exploitation of the groundwater resources and the ecological protection and restoration in the Badain Jaran Desert.