Shield tunnel lining is prone to water leakage,which may further bring about corrosion and structural damage to the walls,potentially leading to dangerous accidents.To avoid tedious and inefficient manual inspection,m...Shield tunnel lining is prone to water leakage,which may further bring about corrosion and structural damage to the walls,potentially leading to dangerous accidents.To avoid tedious and inefficient manual inspection,many projects use artificial intelligence(Al)to detect cracks and water leakage.A novel method for water leakage inspection in shield tunnel lining that utilizes deep learning is introduced in this paper.Our proposal includes a ConvNeXt-S backbone,deconvolutional-feature pyramid network(D-FPN),spatial attention module(SPAM).and a detection head.It can extract representative features of leaking areas to aid inspection processes.To further improve the model's robustness,we innovatively use an inversed low-light enhancement method to convert normally illuminated images to low light ones and introduce them into the training samples.Validation experiments are performed,achieving the average precision(AP)score of 56.8%,which outperforms previous work by a margin of 5.7%.Visualization illustrations also support our method's practical effectiveness.展开更多
Water leakage inspection in the tunnels is a critical engineering job that has attracted increasing concerns.Leakage area detection via manual inspection techniques is time-consuming and might produce unreliablefinding...Water leakage inspection in the tunnels is a critical engineering job that has attracted increasing concerns.Leakage area detection via manual inspection techniques is time-consuming and might produce unreliablefindings, so that automated techniques should be created to increase reliability and efficiency. Pre-trainedfoundational segmentation models for large datasets have attracted great interests recently. This paper proposes a novel SAM-based network for accurate automated water leakage inspection. The contributions of thispaper include the efficient adaptation of the SAM (Segment Anything Model) for shield tunnel water leakagesegmentation and the demonstration of the application effect by data experiments. Tunnel SAM Adapter hassatisfactory performance, achieving 76.2 % mIoU and 77.5 % Dice. Experimental results demonstrate that ourapproach has advantages over peer studies and guarantees the integrity and safety of these vital assets whilestreamlining tunnel maintenance.展开更多
Nuclear proteins are major constituents and key regulators of nucleome topological organization and manipulators of nuclear events.To decipher the global connectivity of nuclear proteins and the hierarchically organiz...Nuclear proteins are major constituents and key regulators of nucleome topological organization and manipulators of nuclear events.To decipher the global connectivity of nuclear proteins and the hierarchically organized modules of their interactions,we conducted two rounds of cross-linking mass spectrometry(XL-MS)analysis,one of which followed a quantitative double chemical cross-linking mass spectrometry(in vivo qXL-MS)workflow,and identified 24,140 unique crosslinks in total from the nuclei of soybean seedlings.This in vivo quantitative interactomics enabled the identification of 5340 crosslinks that can be converted into 1297 nuclear protein–protein interactions(PPIs),1220(94%)of which were non-confirmative(or novel)nuclear PPIs compared with those in repositories.There were 250 and 26 novel interactors of histones and the nucleolar box C/D small nucleolar ribonucleoprotein complex,respectively.Modulomic analysis of orthologous Arabidopsis PPIs produced 27 and 24 master nuclear PPI modules(NPIMs)that contain the condensate-forming protein(s)and the intrinsically disordered region–containing proteins,respectively.These NPIMs successfully captured previously reported nuclear protein complexes and nuclear bodies in the nucleus.Surprisingly,these NPIMs were hierarchically assorted into four higher-order communities in a nucleomic graph,including genome and nucleolus communities.This combinatorial pipeline of 4C quantitative interactomics and PPI network modularization revealed 17 ethylene-specific module variants that participate in a broad range of nuclear events.The pipeline was able to capture both nuclear protein complexes and nuclear bodies,construct the topological architectures of PPI modules and module variants in the nucleome,and probably map the protein compositions of biomolecular condensates.展开更多
Fluorescent analysis of bone provides valuable insights into bone structures.However,conventional dyes suffer from low specificity on bone tissue,small stokes shift,short fluorescent lifetime,and aggregation-caused qu...Fluorescent analysis of bone provides valuable insights into bone structures.However,conventional dyes suffer from low specificity on bone tissue,small stokes shift,short fluorescent lifetime,and aggregation-caused quenching effect,which result in low efficacy and artifacts.In this work,we design an aggregation-induced emission(AIE)-active iridium(III)complex(Ir-BP2)as a highly selective,convenient,nondestructiveness,and dual-mode staining agent for bone analysis.Ir-BP2 containing phosphonate groups selectively binds to hydroxyapatites,the main component of bone matrix,and exhibits turn-on AIE phosphorescence with prolonged lifetime.Ir-BP2 exhibits promising biosafety and offers higher accuracy in staining calcium deposits than conventional Alizarin Red S staining assay when it is employed in real-time monitoring of osteogenesis differentiation process.A ready-to-use staining spray of Ir-BP2 is fabricated.By using fluorescent imaging and lifetime imaging,Ir-BP2 staining provides valuable insights into bone microstructure analysis,microdamage diagnosis,and bone growth state identification.Further,Ir-BP2 is successfully applied on a human spine vertebra for diagnosing bone invasiveness of eosinophilic granuloma,validating its clinical practice.This work presents a powerful tool in bone analysis and will lead to new approaches for the diagnosis and treatment of bone-related diseases.展开更多
A new thermomechanical process consisting of heavy cold rolling(HCR)and short-time heat treatment(STH)is developed to fabricate fine-grained martensite microstructure in a low-cost plain low-carbon steel.To achieve th...A new thermomechanical process consisting of heavy cold rolling(HCR)and short-time heat treatment(STH)is developed to fabricate fine-grained martensite microstructure in a low-cost plain low-carbon steel.To achieve the optimal mechanical properties after STH,three different ferrite-pearlite(F-P)dual-phase microstructures are prepared via hot rolling(HR),HR and austenitizing,and HR and HCR.The microstructure evolution and the comprehensive mechanical properties of the alloy during STH are then investigated.We find that the volume fractions of transformed martensite after STH increase with decreasing grain sizes of the pre-STH F-P dual phases.The rapid heating and short-time holding of STH promote grain nucleation and inhibit grain growth,resulting in microstructure refinement.The formation of martensites with different morphologies and different carbon concentrations in the HR and HCR+STH alloy is identified,owing to the inhomogeneous carbon distribution by STH.Tensile experiments demonstrate that STH greatly improves the comprehension mechanical properties of the alloy.Excellent mechanical properties,with a yield strength of 1224 MPa,a tensile strength of 1583 MPa,a uniform elongation of 4.0%and a total elongation of 7.3%are achieved in the HR and HCR+STH alloy.These excellent mechanical properties are principally attributed to the microstructure refinement and martensite formation induced by STH,with a yield strength improvement of 134%and a tensile strength improvement of 150%relative to the HR alloy.展开更多
Ethylene participates in the regulation of numerous cellular events and biological processes, including wa- ter loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic i...Ethylene participates in the regulation of numerous cellular events and biological processes, including wa- ter loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a lSN stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eill-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene- regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-O and ein3eill genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up- regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs.展开更多
The radiation generated by nuclear reaction is harmful to human body and equipment,thus the radiation shielding materials that employ the shielding ability from neutron and gamma rays are the best candidates according...The radiation generated by nuclear reaction is harmful to human body and equipment,thus the radiation shielding materials that employ the shielding ability from neutron and gamma rays are the best candidates according to application situations and radiation sources.In this paper,the researches of metal-based neutron and gamma rays or multiple purpose shielding materials are systematically summarized,and the respective and principal problems of these materials with respect to shielding effectiveness and other performances,such as corrosion,mechanical properties,manufacture,etc.,are discussed.Finally,the prospect of shielding materials is outlined,which suggests that the development of highly efficient and multiply functional radiation shielding materials with good environmental compatibility is one of the future development trends.展开更多
A bulk nanostructured twinning-induced plasticity (TWIP) steel with high ductility and high strength was fabricated by cryogenic asymmetry-rolling (cryo-ASR) and subsequent recovery treatment. It was found that th...A bulk nanostructured twinning-induced plasticity (TWIP) steel with high ductility and high strength was fabricated by cryogenic asymmetry-rolling (cryo-ASR) and subsequent recovery treatment. It was found that the cryo-ASRed TWIP steels exhibit simultaneous improvements in the ductility, strength and work hardening. Typical microstructures of the cryo-ASR TWIP steel were characterized by shear bands and intensive mechanical nano-sized twins induced by cryogenic deformation. These mechanical nano-scale twins remain thermally stable during the subsequent recovery treatment. It is believed that the ductility enhancement and high work-hardening ability for the cryo-ASR TWIP steels should be mainly attributed to the high-densitv pre-existing nano-scale twins.展开更多
The present paper introduces a highly sensitive and selective method for simultaneous quantification of 12 cytokinins (free form and their conjugates). The method includes a protocol of extraction with methanol/wate...The present paper introduces a highly sensitive and selective method for simultaneous quantification of 12 cytokinins (free form and their conjugates). The method includes a protocol of extraction with methanol/water/formic acid (15/4/1, v/v/v) to the micro-scale samples, pre-purification with solid phase extraction (SPE) cartridges of the extracts, separation with a high performance liquid chromatography (HPLC) and detection by an electrospray ionization ion trap mass spectrometry (ESl-lon trap-MS) system in a consecutive ion monitoring (CRM) mode at the three stage fragmentation of mass spectrometry (MS3). The lowest detection level of the cytokinins of the method reaches 0.1-2.0 pg with a very wide range of linear regression from 1-512 pg, at the coefficient factors of 0.98-0.99. The feasibility of this method has been proven in the application of the method to the analysis of the trace-amount contents of cytokinins in the micro-scale samples of various types of plant materials, such as aerial parts of rice and poplar leaves etc. 12 endogenous cytokinins had been identified and quantified in the plant tissues, with an acceptable relatively higher recovery rate from 40% to 70%.展开更多
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.62171114 and 52222810)the Fundamental Research Funds for the Central Universities(No.DUT22RC(3)099).
文摘Shield tunnel lining is prone to water leakage,which may further bring about corrosion and structural damage to the walls,potentially leading to dangerous accidents.To avoid tedious and inefficient manual inspection,many projects use artificial intelligence(Al)to detect cracks and water leakage.A novel method for water leakage inspection in shield tunnel lining that utilizes deep learning is introduced in this paper.Our proposal includes a ConvNeXt-S backbone,deconvolutional-feature pyramid network(D-FPN),spatial attention module(SPAM).and a detection head.It can extract representative features of leaking areas to aid inspection processes.To further improve the model's robustness,we innovatively use an inversed low-light enhancement method to convert normally illuminated images to low light ones and introduce them into the training samples.Validation experiments are performed,achieving the average precision(AP)score of 56.8%,which outperforms previous work by a margin of 5.7%.Visualization illustrations also support our method's practical effectiveness.
基金funded by the National Natural Science Foundation of China(Nos.62171114,52222810)the Fundamental Research Funds for the Central Universities(No.DUT22RC(3)099).
文摘Water leakage inspection in the tunnels is a critical engineering job that has attracted increasing concerns.Leakage area detection via manual inspection techniques is time-consuming and might produce unreliablefindings, so that automated techniques should be created to increase reliability and efficiency. Pre-trainedfoundational segmentation models for large datasets have attracted great interests recently. This paper proposes a novel SAM-based network for accurate automated water leakage inspection. The contributions of thispaper include the efficient adaptation of the SAM (Segment Anything Model) for shield tunnel water leakagesegmentation and the demonstration of the application effect by data experiments. Tunnel SAM Adapter hassatisfactory performance, achieving 76.2 % mIoU and 77.5 % Dice. Experimental results demonstrate that ourapproach has advantages over peer studies and guarantees the integrity and safety of these vital assets whilestreamlining tunnel maintenance.
基金supported by grants 31370315,31570187,31870231,and 32070205 from the National Science Foundation of China16102422,16103621,16101114,16103817,16103615,16100318,16101819,16101920,16306919,AOE/M-403-16,R4012-18,and C6021-19EF from the RGC of Hong Kong+2 种基金ITS/480/18FP and MHP/033/20 from the Innovation and Technology Commission(ITC)of Hong Kongthe Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone project(HZQB-KCZYB-2020083)internal funding support from HKUST.
文摘Nuclear proteins are major constituents and key regulators of nucleome topological organization and manipulators of nuclear events.To decipher the global connectivity of nuclear proteins and the hierarchically organized modules of their interactions,we conducted two rounds of cross-linking mass spectrometry(XL-MS)analysis,one of which followed a quantitative double chemical cross-linking mass spectrometry(in vivo qXL-MS)workflow,and identified 24,140 unique crosslinks in total from the nuclei of soybean seedlings.This in vivo quantitative interactomics enabled the identification of 5340 crosslinks that can be converted into 1297 nuclear protein–protein interactions(PPIs),1220(94%)of which were non-confirmative(or novel)nuclear PPIs compared with those in repositories.There were 250 and 26 novel interactors of histones and the nucleolar box C/D small nucleolar ribonucleoprotein complex,respectively.Modulomic analysis of orthologous Arabidopsis PPIs produced 27 and 24 master nuclear PPI modules(NPIMs)that contain the condensate-forming protein(s)and the intrinsically disordered region–containing proteins,respectively.These NPIMs successfully captured previously reported nuclear protein complexes and nuclear bodies in the nucleus.Surprisingly,these NPIMs were hierarchically assorted into four higher-order communities in a nucleomic graph,including genome and nucleolus communities.This combinatorial pipeline of 4C quantitative interactomics and PPI network modularization revealed 17 ethylene-specific module variants that participate in a broad range of nuclear events.The pipeline was able to capture both nuclear protein complexes and nuclear bodies,construct the topological architectures of PPI modules and module variants in the nucleome,and probably map the protein compositions of biomolecular condensates.
基金National Natural Science Foundation of China,Grant/Award Number:22107087Yong Talent Support Plan of Xi’an Jiaotong University,Grant/Award Number:YX6J024+1 种基金Science and Technology Planning Project of Guangzhou,Grant/Award Number:202002030089Key Projects of Social Welfare and Basic Research of Zhongshan City,Grant/Award Number:2021B2007。
文摘Fluorescent analysis of bone provides valuable insights into bone structures.However,conventional dyes suffer from low specificity on bone tissue,small stokes shift,short fluorescent lifetime,and aggregation-caused quenching effect,which result in low efficacy and artifacts.In this work,we design an aggregation-induced emission(AIE)-active iridium(III)complex(Ir-BP2)as a highly selective,convenient,nondestructiveness,and dual-mode staining agent for bone analysis.Ir-BP2 containing phosphonate groups selectively binds to hydroxyapatites,the main component of bone matrix,and exhibits turn-on AIE phosphorescence with prolonged lifetime.Ir-BP2 exhibits promising biosafety and offers higher accuracy in staining calcium deposits than conventional Alizarin Red S staining assay when it is employed in real-time monitoring of osteogenesis differentiation process.A ready-to-use staining spray of Ir-BP2 is fabricated.By using fluorescent imaging and lifetime imaging,Ir-BP2 staining provides valuable insights into bone microstructure analysis,microdamage diagnosis,and bone growth state identification.Further,Ir-BP2 is successfully applied on a human spine vertebra for diagnosing bone invasiveness of eosinophilic granuloma,validating its clinical practice.This work presents a powerful tool in bone analysis and will lead to new approaches for the diagnosis and treatment of bone-related diseases.
基金funded by the National Natural Science Foundation of China(No.52071212).
文摘A new thermomechanical process consisting of heavy cold rolling(HCR)and short-time heat treatment(STH)is developed to fabricate fine-grained martensite microstructure in a low-cost plain low-carbon steel.To achieve the optimal mechanical properties after STH,three different ferrite-pearlite(F-P)dual-phase microstructures are prepared via hot rolling(HR),HR and austenitizing,and HR and HCR.The microstructure evolution and the comprehensive mechanical properties of the alloy during STH are then investigated.We find that the volume fractions of transformed martensite after STH increase with decreasing grain sizes of the pre-STH F-P dual phases.The rapid heating and short-time holding of STH promote grain nucleation and inhibit grain growth,resulting in microstructure refinement.The formation of martensites with different morphologies and different carbon concentrations in the HR and HCR+STH alloy is identified,owing to the inhomogeneous carbon distribution by STH.Tensile experiments demonstrate that STH greatly improves the comprehension mechanical properties of the alloy.Excellent mechanical properties,with a yield strength of 1224 MPa,a tensile strength of 1583 MPa,a uniform elongation of 4.0%and a total elongation of 7.3%are achieved in the HR and HCR+STH alloy.These excellent mechanical properties are principally attributed to the microstructure refinement and martensite formation induced by STH,with a yield strength improvement of 134%and a tensile strength improvement of 150%relative to the HR alloy.
文摘Ethylene participates in the regulation of numerous cellular events and biological processes, including wa- ter loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a lSN stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eill-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene- regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-O and ein3eill genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up- regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs.
文摘The radiation generated by nuclear reaction is harmful to human body and equipment,thus the radiation shielding materials that employ the shielding ability from neutron and gamma rays are the best candidates according to application situations and radiation sources.In this paper,the researches of metal-based neutron and gamma rays or multiple purpose shielding materials are systematically summarized,and the respective and principal problems of these materials with respect to shielding effectiveness and other performances,such as corrosion,mechanical properties,manufacture,etc.,are discussed.Finally,the prospect of shielding materials is outlined,which suggests that the development of highly efficient and multiply functional radiation shielding materials with good environmental compatibility is one of the future development trends.
基金financially supported by the Jiangxi Provincial Science and Technology Department(No.20151BDH80082)the China National Major Science and Technology Project(No.2014ZX07214-002)the financial support from China Postdoctoral Science Foundation(No.2015M581608)
文摘A bulk nanostructured twinning-induced plasticity (TWIP) steel with high ductility and high strength was fabricated by cryogenic asymmetry-rolling (cryo-ASR) and subsequent recovery treatment. It was found that the cryo-ASRed TWIP steels exhibit simultaneous improvements in the ductility, strength and work hardening. Typical microstructures of the cryo-ASR TWIP steel were characterized by shear bands and intensive mechanical nano-sized twins induced by cryogenic deformation. These mechanical nano-scale twins remain thermally stable during the subsequent recovery treatment. It is believed that the ductility enhancement and high work-hardening ability for the cryo-ASR TWIP steels should be mainly attributed to the high-densitv pre-existing nano-scale twins.
基金supported by the National Natural Science Foundation of China (30630053) to Dr Xiangning Jiang and well-advised and directed by Dr Jiayang Li
文摘The present paper introduces a highly sensitive and selective method for simultaneous quantification of 12 cytokinins (free form and their conjugates). The method includes a protocol of extraction with methanol/water/formic acid (15/4/1, v/v/v) to the micro-scale samples, pre-purification with solid phase extraction (SPE) cartridges of the extracts, separation with a high performance liquid chromatography (HPLC) and detection by an electrospray ionization ion trap mass spectrometry (ESl-lon trap-MS) system in a consecutive ion monitoring (CRM) mode at the three stage fragmentation of mass spectrometry (MS3). The lowest detection level of the cytokinins of the method reaches 0.1-2.0 pg with a very wide range of linear regression from 1-512 pg, at the coefficient factors of 0.98-0.99. The feasibility of this method has been proven in the application of the method to the analysis of the trace-amount contents of cytokinins in the micro-scale samples of various types of plant materials, such as aerial parts of rice and poplar leaves etc. 12 endogenous cytokinins had been identified and quantified in the plant tissues, with an acceptable relatively higher recovery rate from 40% to 70%.