期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Hybrided Trapezoidal-Difference Scheme for Nonlinear Time-Fractional Fourth-Order Advection-Dispersion Equation Based on Chebyshev Spectral Collocation Method
1
作者 shichao yi Hongguang Sun 《Advances in Applied Mathematics and Mechanics》 SCIE 2019年第1期197-215,共19页
In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fract... In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fractional derivative order a2(1,2).A new unknown function v(x,t)=■u(x,t)/■t is introduced and u(x,t)is recovered using the trapezoidal formula.As a result of the variable v(x,t)are introduced in each time step,the constraints of traditional plans considering the non-integer time situation of u(x,t)is no longer considered.The stability and solvability are proved with detailed proofs and the precise describe of error estimates is derived.Further,Chebyshev spectral collocation method supports accurate and efficient variable coefficient model with variable coefficients.Several numerical results are obtained and analyzed in multi-dimensional spatial domains and numerical convergence order are consistent with the theoretical value 3-a order for different a under infinite norm. 展开更多
关键词 Trapezoidal-difference scheme time-fractional order variable coefficient fourth-order advection-dispersion equation Chebyshev spectral collocation method NONLINEARITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部