To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the s...To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction.展开更多
In this study,a single dielectric barrier discharge(DBD)coaxial reactor was used to degrade 4,4'-sulfonylbis(TBBPS)in water using greenhouse gas(CO_(2))and argon as the carrier gases.The investigation focused on C...In this study,a single dielectric barrier discharge(DBD)coaxial reactor was used to degrade 4,4'-sulfonylbis(TBBPS)in water using greenhouse gas(CO_(2))and argon as the carrier gases.The investigation focused on CO_(2)conversion,reactive species formation,gas-liquid mass transfer mechanism,and degradation mechanism of TBBPS during the discharge plasma process.With the decrease of CO_(2)/Ar ratio in the process of plasma discharge,the emission spectrum intensity of Ar,CO_(2)and excited reactive species was enhanced.This increase promoted collision and dissociation of CO_(2),resulting in a series of chemical reactions that improved the production of reactive species such as·OH,^(1)O_(2),H_(2)O_(2)and O_(3).These reactive species initiated a sequence of reactions with TBBPS.Results indicated that at a gas flow rate of 240 mL/min with a CO_(2)/Ar ratio of 1:5,both the highest CO_(2)conversion rate(17.76%)and TBBPS degradation rate(94.24%)were achieved.The degradation mechanism was elucidated by determining types and contents of reactive species present in treatment liquid along with analysis of intermediate products using liquid chromatography-mass spectrometry techniques.This research provides novel insights into carbon dioxide utilization and water pollution control through dielectric barrier discharge plasma technology.展开更多
基金supported by the National Key Research and Development Program of China(2023YFB4005700,2023YFB4005705,and 2023YFB4005702-03)the Academy-Local Cooperation Project of the Chinese Academy of Engineering(2023-DFZD-01)+4 种基金the National Natural Science Foundation of China(52207151)the Natural Science Foundation of Anhui Province(2208085QA29)the University Synergy Innovation Program of Anhui Province(GXXT-2022025)the independent project of the Energy Research Institute of Hefei Comprehensive National Science Center(Anhui Energy Laboratory22KZZ525,23KZS402,22KZS301,and 22KZS304).
文摘To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction.
基金supported jointly by National Natural Science Foundation of China(No.51877208)Anhui Provincial Key R&D Programmers(No.202004a07020047)。
文摘In this study,a single dielectric barrier discharge(DBD)coaxial reactor was used to degrade 4,4'-sulfonylbis(TBBPS)in water using greenhouse gas(CO_(2))and argon as the carrier gases.The investigation focused on CO_(2)conversion,reactive species formation,gas-liquid mass transfer mechanism,and degradation mechanism of TBBPS during the discharge plasma process.With the decrease of CO_(2)/Ar ratio in the process of plasma discharge,the emission spectrum intensity of Ar,CO_(2)and excited reactive species was enhanced.This increase promoted collision and dissociation of CO_(2),resulting in a series of chemical reactions that improved the production of reactive species such as·OH,^(1)O_(2),H_(2)O_(2)and O_(3).These reactive species initiated a sequence of reactions with TBBPS.Results indicated that at a gas flow rate of 240 mL/min with a CO_(2)/Ar ratio of 1:5,both the highest CO_(2)conversion rate(17.76%)and TBBPS degradation rate(94.24%)were achieved.The degradation mechanism was elucidated by determining types and contents of reactive species present in treatment liquid along with analysis of intermediate products using liquid chromatography-mass spectrometry techniques.This research provides novel insights into carbon dioxide utilization and water pollution control through dielectric barrier discharge plasma technology.