A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high phot...A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high photocatalytic performance in Methyl Orange(MO)degradation under visible light.The best sample presented a degradation rate of 0.164 min^-1,which is 3.2 and 82 times as high as that of Bi4O5I2 and g-C3N4,respectively.The g-C3N4/Bi4O5I2 was characterized by X-ray powder diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Raman,X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectra(DRS),electrochemical impedance spectroscopy(EIS)and transient photocurrent response in order to explain the enhanced photoactivity.Results indicated that the decoration with a small amount of g-C3N4 influenced the specific surface area only slightly.Nevertheless,the capability for absorbing visible light was improved measurably,which was beneficial to the MO degradation.On top of that,a strong interaction between g-C3N4 and Bi4O5I2 was detected.This interplay promoted the formation of a favorable heterojunction structure and thereby enhanced the charge separation.Thus,the g-C3N4/Bi4O5I2 composite presented greater charge separation efficiency and much better photocatalytic performance than Bi4O5I2.Additionally,g-C3N4/Bi4O5I2 also presented high stability.·O2^- and holes were verified to be the main reactive species.展开更多
基金financially supported by National Undergraduate Training Program for Innovation and Entrepreneurship(Nos.201810345012 and 201810345051)
文摘A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high photocatalytic performance in Methyl Orange(MO)degradation under visible light.The best sample presented a degradation rate of 0.164 min^-1,which is 3.2 and 82 times as high as that of Bi4O5I2 and g-C3N4,respectively.The g-C3N4/Bi4O5I2 was characterized by X-ray powder diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Raman,X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectra(DRS),electrochemical impedance spectroscopy(EIS)and transient photocurrent response in order to explain the enhanced photoactivity.Results indicated that the decoration with a small amount of g-C3N4 influenced the specific surface area only slightly.Nevertheless,the capability for absorbing visible light was improved measurably,which was beneficial to the MO degradation.On top of that,a strong interaction between g-C3N4 and Bi4O5I2 was detected.This interplay promoted the formation of a favorable heterojunction structure and thereby enhanced the charge separation.Thus,the g-C3N4/Bi4O5I2 composite presented greater charge separation efficiency and much better photocatalytic performance than Bi4O5I2.Additionally,g-C3N4/Bi4O5I2 also presented high stability.·O2^- and holes were verified to be the main reactive species.