We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the informat...We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.展开更多
基金Supported in part by National Natural Science Foundation of China Grant (No.10131040).The author also thanks the referee's constructive suggestions.
文摘We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.