The role of N2 fixation in structuring plant communities and influencing ecosystem function will be potentially large. In previous study, we investigated nodule biomass and activity, and calculated the amount of N2 fi...The role of N2 fixation in structuring plant communities and influencing ecosystem function will be potentially large. In previous study, we investigated nodule biomass and activity, and calculated the amount of N2 fixation in a naturally established 18-year-old alder (Alnus hirsute (Turcz.) var. sibirica) stand following disturbance by road construction in Takayama, central Japan. In this study, to estimate the facilitation effects by alder on the spatial distribution of the regenerated tree species, we examined the distribution pattern of the regenerated tree species in this naturally established 18-year-old alder stand. The distribution pattern of alder and the regenerated woody species was analyzed in terms of spatial point processes and the regenerated species tended to distribute near the alder site. In particular, bird-dispersed tree species (endozoochory species) with relatively high shade tolerance showed a significant attraction to alder. These results suggest that alder will be used as roost trees and play the role of mother trees for these regenerated species at the degraded site. It was also suggested that the endozoochory species, which occupy 13 of 26 regenerated species in this stand, might regenerate faster than other species at this alder stand.展开更多
文摘The role of N2 fixation in structuring plant communities and influencing ecosystem function will be potentially large. In previous study, we investigated nodule biomass and activity, and calculated the amount of N2 fixation in a naturally established 18-year-old alder (Alnus hirsute (Turcz.) var. sibirica) stand following disturbance by road construction in Takayama, central Japan. In this study, to estimate the facilitation effects by alder on the spatial distribution of the regenerated tree species, we examined the distribution pattern of the regenerated tree species in this naturally established 18-year-old alder stand. The distribution pattern of alder and the regenerated woody species was analyzed in terms of spatial point processes and the regenerated species tended to distribute near the alder site. In particular, bird-dispersed tree species (endozoochory species) with relatively high shade tolerance showed a significant attraction to alder. These results suggest that alder will be used as roost trees and play the role of mother trees for these regenerated species at the degraded site. It was also suggested that the endozoochory species, which occupy 13 of 26 regenerated species in this stand, might regenerate faster than other species at this alder stand.