期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-pressure phase transitions of anorthosite crust in the Earth's deep mantle
1
作者 Masayuki Nishi Steeve Gréaux +4 位作者 shigehiko tateno Yasuhiro Kuwayama Kenji Kawai Tetsuo Irifune Shigenori Maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1859-1870,共12页
We investigated phase relations, mineral chemistry, and density of lunar highland anorthosite at conditions up to 125 GPa and 2000 K. We used a multi-anvil apparatus and a laser-heated diamond-anvil cell for this purp... We investigated phase relations, mineral chemistry, and density of lunar highland anorthosite at conditions up to 125 GPa and 2000 K. We used a multi-anvil apparatus and a laser-heated diamond-anvil cell for this purpose. In-situ X-ray diffraction measurements at high pressures and composition analysis of recovered samples using an analytical transmission electron microscope showed that anorthosite consists of garnet,CaAl_4Si_2O_(11)-rich phase(CAS phase), and SiO_2 phases in the upper mantle and the mantle transition zone.Under lower mantle conditions, these minerals transform to the assemblage of bridgmanite, Ca-perovskite,corundum, stishovite, and calcium ferrite-type aluminous phase through the decomposition of garnet and CAS phase at around 700 km depth. Anorthosite has a higher density than PREM and pyrolite in the upper mantle, while its density becomes comparable or lower under lower mantle conditions. Our results suggest that ancient anorthosite crust subducted down to the deep mantle was likely to have accumulated at660-720 km in depth without coming back to the Earth's surface. Some portions of the anorthosite crust might have circulated continuously in the Earth's deep interior by mantle convection and potentially subducted to the bottom of the lower mantle when carried within layers of dense basaltic rocks. 展开更多
关键词 ANORTHOSITE Phase transformation Multi-anvil apparatus Diamond-anvil cell MANTLE dynamics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部