Deregulated c-Myc expression is a hallmark of many human cancers. We have recently identified a role of mammalian homolog of yeast SPT-ADA-GCN5-acetyltransferas(SAGA) complex component, SAGAassociated factor 29(SGF29)...Deregulated c-Myc expression is a hallmark of many human cancers. We have recently identified a role of mammalian homolog of yeast SPT-ADA-GCN5-acetyltransferas(SAGA) complex component, SAGAassociated factor 29(SGF29), in regulating the c-Myc overexpression. Here, we discuss the molecular nature of SFG29 in SPT3-TAF9-GCN5-acetyltransferase complex, a counterpart of yeast SAGA complex, and the mechanism through which the elevated SGF29 expression contribute to oncogenic potential of c-Myc in hepatocellularcarcinoma(HCC). We propose that the upstream regulation of SGF29 elicited by sexdetermining region Y(Sry) is also augmented in HCC. We hypothesize that c-Myc elevation driven by the deregulated Sry and SGF29 pathway is implicated in the male specific acquisition of human HCCs.展开更多
基金Supported by The "Academic Frontier" project for Private University:a matching fund subsidy from MEXT(Ministry of Education,Culture,Sports,Science and Technology),2006-2010(to Tashiro F)
文摘Deregulated c-Myc expression is a hallmark of many human cancers. We have recently identified a role of mammalian homolog of yeast SPT-ADA-GCN5-acetyltransferas(SAGA) complex component, SAGAassociated factor 29(SGF29), in regulating the c-Myc overexpression. Here, we discuss the molecular nature of SFG29 in SPT3-TAF9-GCN5-acetyltransferase complex, a counterpart of yeast SAGA complex, and the mechanism through which the elevated SGF29 expression contribute to oncogenic potential of c-Myc in hepatocellularcarcinoma(HCC). We propose that the upstream regulation of SGF29 elicited by sexdetermining region Y(Sry) is also augmented in HCC. We hypothesize that c-Myc elevation driven by the deregulated Sry and SGF29 pathway is implicated in the male specific acquisition of human HCCs.