AIM: To determine the prevalence of SLC25A13 mutations in the Thai population.METHODS: A total of 1537 subjects representing the Thai population were screened for a novel pathologic allele p.Met1? (c.2T > C) and si...AIM: To determine the prevalence of SLC25A13 mutations in the Thai population.METHODS: A total of 1537 subjects representing the Thai population were screened for a novel pathologic allele p.Met1? (c.2T > C) and six previously known common SLC25A13 mutations: [I] (c.851_854delGTAT), [II] (g.IVS11 + 1G > A), [III] (c.1638_1660dup), [IV] (p.S225X), [V] (IVS13 + 1G > A), and [XIX] (g.IVS16ins3kb) using a newly developed TaqMan and established HybProbe assay, respectively. Sanger sequencing was employed for specimens showing an aberrant peak to confirm the targeted mutation as well as the unknown aberrant peaks detected. Frequencies of the mutations identified were compared in each region. Carrier frequency and disease prevalence of citrin deficiency caused by SCL25A13 mutations were estimated.RESULTS: p.Met1? was identified in the heterozygous state in 85 individuals, giving a carrier frequency of 1/18, which suggests possible selective advantage of this variant. The question of p.Met1? homozygote lethality remains unanswered which may serve as an explanation as to why this homozygote has yet to be identified in patients/controls even with high allele frequency. The p.Met1? mutation has rarely been studied in populations other than Thai and Chinese; therefore, may have been overlooked. Development of the TaqMan assay in the present study would allow a simple, rapid, and cost-effective method for mass screening. Heterozygous mutations: [XIX] and [I] were identified in 17 individuals, giving a carrier rate of 1/90 and a calculated homozygote rate of 1/33000. Two novel variants, g.IVS11 + 17C > G and c.1311C > T, of unknown clinical significance were identified at low frequency.CONCLUSION: This study highlighted the current underestimation of citrin deficiency and suggests the possible selective advantage of the p.Met1? allele.展开更多
Propionic acidemia is an autosomal recessive disorder that is due to deficiency in the enzyme propionyl-CoA carboxylase. Cardiomyopathy is a well-known phenomenon in propionic acidemia that it may rapidly progress to ...Propionic acidemia is an autosomal recessive disorder that is due to deficiency in the enzyme propionyl-CoA carboxylase. Cardiomyopathy is a well-known phenomenon in propionic acidemia that it may rapidly progress to death. Here we describe a case of propionic acidemia in a 27-year-old man who developed adult-onset secondary dilated cardiomyopathy. In early infancy he was diagnosed with propionic acidemia and was later noted to have mild mental retardation, mild renal failure, and optic nerve atrophy. Although he was in good energy status with a low-protein diet and carnitine supplementation, he was admitted to our university hospital with decompensate heart failure, which resulted in low-output cardiac syndrome with massive mitral regurgitation and left ventricular dyssynchrony. Cardiac resynchronization therapy (CRT) and continuous hemodiafiltration followed by hemodialysis (HD) dramatically improved his clinical status.展开更多
基金Supported by A joint grant from Mahidol University Faculty of Science and Ramathibodi Hospital Faculty of Medicine (Jensen LT and Wattanasirichaigoon D)Mahidol University (Wattanasirichaigoon D: 49/2556)+2 种基金the Pharmacogenomics Project,the collaborative project from the Thailand Center of Excellence for Life Science and Mahidol University to Sukasem Cthe Medical Scholars Program of Mahidol University (Wongkittichote P)a recipient (Wattanasirichaigoon D) of Research Career Development Award,Faculty of Medicine Ramathibodi Hospital
文摘AIM: To determine the prevalence of SLC25A13 mutations in the Thai population.METHODS: A total of 1537 subjects representing the Thai population were screened for a novel pathologic allele p.Met1? (c.2T > C) and six previously known common SLC25A13 mutations: [I] (c.851_854delGTAT), [II] (g.IVS11 + 1G > A), [III] (c.1638_1660dup), [IV] (p.S225X), [V] (IVS13 + 1G > A), and [XIX] (g.IVS16ins3kb) using a newly developed TaqMan and established HybProbe assay, respectively. Sanger sequencing was employed for specimens showing an aberrant peak to confirm the targeted mutation as well as the unknown aberrant peaks detected. Frequencies of the mutations identified were compared in each region. Carrier frequency and disease prevalence of citrin deficiency caused by SCL25A13 mutations were estimated.RESULTS: p.Met1? was identified in the heterozygous state in 85 individuals, giving a carrier frequency of 1/18, which suggests possible selective advantage of this variant. The question of p.Met1? homozygote lethality remains unanswered which may serve as an explanation as to why this homozygote has yet to be identified in patients/controls even with high allele frequency. The p.Met1? mutation has rarely been studied in populations other than Thai and Chinese; therefore, may have been overlooked. Development of the TaqMan assay in the present study would allow a simple, rapid, and cost-effective method for mass screening. Heterozygous mutations: [XIX] and [I] were identified in 17 individuals, giving a carrier rate of 1/90 and a calculated homozygote rate of 1/33000. Two novel variants, g.IVS11 + 17C > G and c.1311C > T, of unknown clinical significance were identified at low frequency.CONCLUSION: This study highlighted the current underestimation of citrin deficiency and suggests the possible selective advantage of the p.Met1? allele.
文摘Propionic acidemia is an autosomal recessive disorder that is due to deficiency in the enzyme propionyl-CoA carboxylase. Cardiomyopathy is a well-known phenomenon in propionic acidemia that it may rapidly progress to death. Here we describe a case of propionic acidemia in a 27-year-old man who developed adult-onset secondary dilated cardiomyopathy. In early infancy he was diagnosed with propionic acidemia and was later noted to have mild mental retardation, mild renal failure, and optic nerve atrophy. Although he was in good energy status with a low-protein diet and carnitine supplementation, he was admitted to our university hospital with decompensate heart failure, which resulted in low-output cardiac syndrome with massive mitral regurgitation and left ventricular dyssynchrony. Cardiac resynchronization therapy (CRT) and continuous hemodiafiltration followed by hemodialysis (HD) dramatically improved his clinical status.