期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A multifunctional flexible sensor based on PI-MXene/SrTiO_(3) hybrid aerogel for tactile perception
1
作者 shihao deng Yue Li +7 位作者 Shengzhao Li Shen Yuan Hao Zhu Ju Bai Jingyi Xu Lu Peng Tie Li Ting Zhang 《The Innovation》 EI 2024年第3期44-54,共11页
The inadequacy of tactile perception systems in humanoid robotic manipulators limits the breadth of available robotic applications.Here,we designed a multifunctional flexible tactile sensor for robotic fingers that pr... The inadequacy of tactile perception systems in humanoid robotic manipulators limits the breadth of available robotic applications.Here,we designed a multifunctional flexible tactile sensor for robotic fingers that provides capabilities similar to those of human skin sensing modalities.This sensor utilizes a novel PI-MXene/SrTiO_(3) hybrid aerogel developed as a sensing unit with the additional abilities of electromagnetic transmission and thermal insulation to adapt to certain complex environments.Moreover,polyimide(PI)provides a high-strength skeleton,MXene realizes a pressure-sensing function,and MXene/SrTiO_(3) achieves both thermoelectric and infrared radiation response behaviors.Furthermore,via the pressure response mechanism and unsteady-state heat transfer,these aerogel-derived flexible sensors realize multimodal sensing and recognition capabilities with minimal cross-coupling.They can differentiate among 13 types of hardness and four types of material from objects with accuracies of 94%and 85%,respectively,using a decision tree algorithm.In addition,based on the infrared radiation-sensing function,a sensory array was assembled,and different shapes of objects were successfully recognized.These findings demonstrate that this PI-MXene/SrTiO_(3) aerogel provides a new concept for expanding the multifunctionality of flexible sensors such that the manipulator can more closely reach the tactile level of the human hand.This advancement reduces the difficulty of integrating humanoid robots and provides a new breadth of application scenarios for their possibility. 展开更多
关键词 utilize integrating INSULATION
原文传递
A machine learning-assisted multifunctional tactile sensor for smart prosthetics 被引量:1
2
作者 Yue Li Lin Yang +7 位作者 shihao deng Hong Huang Yingyi Wang Zuoping Xiong Simin Feng Shuqi Wang Tie Li Ting Zhang 《InfoMat》 SCIE CSCD 2023年第9期78-89,共12页
The absence of tactile perception limits the dexterity of a prosthetic hand and its acceptance by amputees.Recreating the sensing properties of the skin using a flexible tactile sensor could have profound implications... The absence of tactile perception limits the dexterity of a prosthetic hand and its acceptance by amputees.Recreating the sensing properties of the skin using a flexible tactile sensor could have profound implications for prosthetics,whereas existing tactile sensors often have limited functionality with cross-interference.In this study,we propose a machine-learning-assisted multifunctional tactile sensor for smart prosthetics,providing a human-like tactile sensing approach for amputations.This flexible sensor is based on a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)-melamine sponge,which enables the detection of force and temperature with low cross-coupling owing to two separate sensing mechanisms:the open-circuit voltage of the sensor as a force-insensitive intrinsic variable to measure the absolute temperature and the resistance as a temperature-insensitive extrinsic variable to measure force.Furthermore,by analyzing the unsteady heat conduction and characterizing it using real-time thermal imaging,we demonstrated that the process of open-circuit voltage variation resulting from the unsteady heat conduction is closely correlated with the heatconducting capabilities of materials,which can be utilized to discriminate between substances.Assisted by the decision tree algorithm,the device is endowed with thermal conductivity sensing ability,which allows it to identify 10 types of substances with an accuracy of 94.7%.Furthermore,an individual wearing an advanced myoelectric prosthesis equipped with the above sensor can sense pressure,temperature,and recognize different materials.We demonstrated that our multifunctional tactile sensor provides a new strategy to help amputees feel force,temperature and identify the material of objects without the aid of vision. 展开更多
关键词 machine learning material classification multifunctional tactile sensor smart prosthetics unsteady heat conduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部