Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and d...Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications.展开更多
Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq...Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.展开更多
A splashing crown is commonly observed when a high-speed drop impacts a liquid film. The influence of the liquid viscosity on the crown's evolution is not yet clear. We review several existing theories of this proble...A splashing crown is commonly observed when a high-speed drop impacts a liquid film. The influence of the liquid viscosity on the crown's evolution is not yet clear. We review several existing theories of this problem, and carry out a series of numerical simulations. We find that a three-segment model can describe the crown's motion. In the very early stage when the crown is barely visible, the influence of viscosity is small. Later, a shallow water approach used in most existing models is applicable as long as the initial conditions are formulated properly. They depend on viscous dissipation in the intermediate period. Preliminary estimation based on a dissipation function is proposed to characterize the influence of viscosity in this problem.展开更多
Electrocaloric refrigeration represents an alternative solid-state cooling technology that has the potential to reach the ultimate goal of achieving zero-global-warming potential,highly efficient refrigeration,and hea...Electrocaloric refrigeration represents an alternative solid-state cooling technology that has the potential to reach the ultimate goal of achieving zero-global-warming potential,highly efficient refrigeration,and heat pumps.To date,both polymeric and inorganic oxides have demonstrated giant electrocaloric effect as well as respective cooling devices.Although both polymeric and inorganic oxides have been identified as promising cooling methods that are distinguishable from the traditional ones,they still pose many challenges to more practical applications.From an electrocaloric material point of view,electrocaloric nanocomposites may provide a solution to combine the beneficial effects of both organic and inorganic electrocaloric materials.This article reviews the recent advancements in polymer-based electrocaloric composites and the state-of-the-art cooling devices operating these nanocomposites.From a device point of view,it discusses the existing challenges and potential opportunities of electrocaloric nanocomposites.展开更多
基金supported by the National Natural Science Foundation under Project No. 52205590the Natural Science Foundation of Jiangsu Province under Project No. BK20220834+4 种基金the Start-up Research Fund of Southeast University under Project No. RF1028623098the Xiaomi Foundation/ Xiaomi Young Talents Programsupported by the Research Impact Fund (project no. R4015-21)Research Fellow Scheme (project no. RFS2122-4S03)the EU-Hong Kong Research and Innovation Cooperation Co-funding Mechanism (project no. E-CUHK401/20) from the Research Grants Council (RGC) of Hong Kong, the SIAT-CUHK Joint Laboratory of Robotics and Intelligent Systems, and the Multi-Scale Medical Robotics Center (MRC), InnoHK, at the Hong Kong Science Park
文摘Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications.
基金The National Natural Science Foundation of China under contract No. 42076078China–Mozambique Joint Cruise under contract No. GASI-01-DLJHJ-CM。
文摘Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.
基金Project supported by the National Natural Science Foundation of China(Nos.11672310 and 11372326)the National Basic Research Program of China(No.2014CB04680202)
文摘A splashing crown is commonly observed when a high-speed drop impacts a liquid film. The influence of the liquid viscosity on the crown's evolution is not yet clear. We review several existing theories of this problem, and carry out a series of numerical simulations. We find that a three-segment model can describe the crown's motion. In the very early stage when the crown is barely visible, the influence of viscosity is small. Later, a shallow water approach used in most existing models is applicable as long as the initial conditions are formulated properly. They depend on viscous dissipation in the intermediate period. Preliminary estimation based on a dissipation function is proposed to characterize the influence of viscosity in this problem.
基金supported by National Key R&D Program of China(No.2020YFA0711500)the National Natural Science Foundation of China(Grant No.52076127)+4 种基金the Natural Science Foundation of Shanghai(Grant Nos.20ZR1471700 and 22JC1401800)the State Key Laboratory of Mechanical System and Vibration(Grant No.MSVZD202211)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Project No.SL2020MS009)the Prospective Research Program at Shanghai Jiao Tong University(No.19X160010008)the Student Innovation Center,and the Instrumental Analysis Center at Shanghai Jiao Tong University.
文摘Electrocaloric refrigeration represents an alternative solid-state cooling technology that has the potential to reach the ultimate goal of achieving zero-global-warming potential,highly efficient refrigeration,and heat pumps.To date,both polymeric and inorganic oxides have demonstrated giant electrocaloric effect as well as respective cooling devices.Although both polymeric and inorganic oxides have been identified as promising cooling methods that are distinguishable from the traditional ones,they still pose many challenges to more practical applications.From an electrocaloric material point of view,electrocaloric nanocomposites may provide a solution to combine the beneficial effects of both organic and inorganic electrocaloric materials.This article reviews the recent advancements in polymer-based electrocaloric composites and the state-of-the-art cooling devices operating these nanocomposites.From a device point of view,it discusses the existing challenges and potential opportunities of electrocaloric nanocomposites.