期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize(Zea mays L.) 被引量:9
1
作者 Liyu Shi Xiangling Lv +9 位作者 Jianfeng Weng Hanyong Zhu Changlin Liu Zhuanfang Hao Yu Zhou Degui zhang Mingshun Li Xiaoke Ci Xinhai Li shihuang zhang 《The Crop Journal》 SCIE CAS 2014年第Z1期132-143,共12页
Gray leaf spot(GLS),caused by Cercospora zeae-maydis,is an important foliar disease of maize(Zea mays L.)worldwide,resistance to which is controlled by multiple quantitative trait loci(QTL).To gain insights into the g... Gray leaf spot(GLS),caused by Cercospora zeae-maydis,is an important foliar disease of maize(Zea mays L.)worldwide,resistance to which is controlled by multiple quantitative trait loci(QTL).To gain insights into the genetic architecture underlying the resistance to this disease,an association mapping population consisting of 161 inbred lines was evaluated for resistance to GLS in a plant pathology nursery at Shenyang in 2010 and 2011.Subsequently,a genome-wide association study,using 41,101 single-nucleotide polymorphisms(SNPs),identified 51 SNPs significantly(P<0.001)associated with GLS resistance,which could be converted into 31 QTL.In addition,three candidate genes related to plant defense were identified,including nucleotidebinding-site/leucine-rich repeat,receptor-like kinase genes similar to those involved in basal defense.Two genic SNPs,PZE-103142893 and PZE-109119001,associated with GLS resistance in chromosome bins 3.07 and 9.07,can be used for marker-assisted selection(MAS)of GLS resistance.These results provide an important resource for developing molecular markers closely linked with the target trait,enhancing breeding efficiency. 展开更多
关键词 CERCOSPORA zeae-maydis MAIZE SNP GENOME-WIDE ASSOCIATION study CANDIDATE GENES
下载PDF
Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases 被引量:8
2
作者 Xiaoming Wang Yunhua zhang +4 位作者 Xiude Xu Hongjie Li Xiaofei Wu shihuang zhang Xinhai Li 《The Crop Journal》 SCIE CAS 2014年第4期213-222,共10页
Foliar diseases are common in most maize-producing regions and have caused serious yield reduction in China. To evaluate genetic resistance of parental lines actively used in maize breeding programs to major foliar di... Foliar diseases are common in most maize-producing regions and have caused serious yield reduction in China. To evaluate genetic resistance of parental lines actively used in maize breeding programs to major foliar diseases, 152 maize inbred lines were tested against northern corn leaf blight(NCLB), southern corn leaf blight(SCLB), Curvularia leaf spot(CLS),gray leaf spot(GLS), common rust, and southern rust from 2003 to 2005. A small number of lines exhibited highly resistant reactions to common rust and southern rust, but none were highly resistant to NCLB, SCLB, CLS, and GLS. Although 53.3%, 40.8%, and 80.7% of lines were resistant to NCLB, SCLB, and common rust, the resistance in most lines was moderate.Resistance to CLS, GLS, and southern rust was rare in this collection of maize lines. Five lines,313, Chang 7-2, Qi 319, Qi 318, and Shen 137, were resistant to five diseases tested. Lines belonging to heterotic subgroup PB exhibited better resistance to the foliar diseases than lines from other heterotic subgroups, such as BSSS, PA, Lancaster, LRC, and PA. The results will be of benefit to breeders for selecting lines in disease resistance breeding programs. 展开更多
关键词 ZEA mays SCREENING RESISTANCE FUNGAL DISEASES
下载PDF
Zea mays(L.) P1 locus for cob glume color identified as a post-domestication selection target with an effect on temperate maize genomes 被引量:6
3
作者 Chuanxiao Xie Jianfeng Weng +9 位作者 Wenguo Liu Cheng Zou Zhuanfang Hao Wenxue Li Minshun Li Xiaosen Guo Gengyun zhang Yunbi Xu Xinhai Li shihuang zhang 《The Crop Journal》 SCIE CAS 2013年第1期15-24,共10页
Artificial selection during domestication and post-domestication improvement results in loss of genetic diversity near target loci. However, the genetic locus associated with cob glume color and the nature of the geno... Artificial selection during domestication and post-domestication improvement results in loss of genetic diversity near target loci. However, the genetic locus associated with cob glume color and the nature of the genomic pattern surrounding it was elusive and the selection effect in that region was not clear. An association mapping panel consisting of 283 diverse modern temperate maize elite lines was genotyped by a chip containing over 55,000 evenly distributed SNPs. Ten-fold resequencing at the target region on 40 of the panel lines and 47 tropical lines was also undertaken. A genome-wide association study(GWAS) for cob glume color confirmed the P1 locus, which is located on the short arm of chromosome 1, with a-log10 P value for surrounding SNPs higher than the Bonferroni threshold(α/n, α < 0.001) when a mixed linear model(MLM) was implemented. A total of 26 markers were identified in a 0.78 Mb region surrounding the P1 locus, including 0.73 Mb and 0.05 Mb upstream and downstream of the P1 gene, respectively. A clear linkage disequilibrium(LD) block was found and LD decayed very rapidly with increasing physical distance surrounding the P1 locus. The estimates of π and Tajima's D were significantly(P < 0.001) lower at both ends compared to the locus. Upon comparison of temperate and tropical lines at much finer resolution by resequencing(180-fold finer than chip SNPs), a more structured LD block pattern was found among the 40 resequenced temperate lines. All evidence indicates that the P1 locus in temperate maize has not undergone neutral evolution but has been subjected to artificial selection during post-domestication selection or improvement. The information and analytical results generated in this study provide insights as to how breeding efforts have affected genome evolution in crop plants. 展开更多
关键词 Genome-wide association study Artificial SELECTION Linkage disequilibrium Crop genome evolution
下载PDF
Identification of Functional Genetic Variations Underlying Drought Tolerance in Maize Using SNP Markers 被引量:5
4
作者 Zhuanfang Hao Xinhai Li +7 位作者 Chuanxiao Xie Jianfeng Weng Mingshun Li Degui zhang Xiaoling Liang Lingling Liu Sisi Liu shihuang zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2011年第8期641-652,共12页
Single nucleotide polymorphism (SNP) is a common form of genetic variation and popularly exists in maize genome. An Illumina GoldenGate assay with 1 536 SNP markers was used to genotype maize inbred lines and identi... Single nucleotide polymorphism (SNP) is a common form of genetic variation and popularly exists in maize genome. An Illumina GoldenGate assay with 1 536 SNP markers was used to genotype maize inbred lines and identified the functional genetic variations underlying drought tolerance by association analysis. Across 80 lines, 1 006 polymorphic SNPs (65.5% of the total) in the assay with good call quality were used to estimate the pattern of genetic diversity, population structure, and familial relatedness. The analysis showed the best number of fixed subgroups was six, which was consistent with their original sources and results using only simple sequence repeat markers. Pairwise linkage disequilibrium (LD) and association mapping with phenotypic traits investigated under water-stressed and well-watered regimes showed rapid LD decline within 100–500 kb along the physical distance of each chromosome, and that 29 SNPs were associated with at least two phenotypic traits in one or more environments, which were related to drought-tolerant or drought-responsive genes. These drought-tolerant SNPs could be converted into functional markers and then used for maize improvement by marker-assisted selection. 展开更多
关键词 association analysis drought tolerance functional variation maize (Zea mays L.) single nucleotide polymorphism.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部