The subfamily Dinetinae W. Fox, genus Dinetus Panzer and species Dinetus arenarius Kazenas are reported from China for the first time. In addition, a key to the worldwide species of the genus Dinetus is provided. The ...The subfamily Dinetinae W. Fox, genus Dinetus Panzer and species Dinetus arenarius Kazenas are reported from China for the first time. In addition, a key to the worldwide species of the genus Dinetus is provided. The examined specimens are deposited in the Insect Collections of Yunnan Agricultural University(YNAU), Kunming, Yunnan Province, China.展开更多
Perovskite materials have become a popular research topic because of their unique optical and electrical properties,that enable extensive applications in information storage,lasers,anti-counterfeiting,and planar lense...Perovskite materials have become a popular research topic because of their unique optical and electrical properties,that enable extensive applications in information storage,lasers,anti-counterfeiting,and planar lenses.However,the success of the application depends on accomplishing high-precision and high-quality perovskite patterning technology.Numerous methods have been proposed for perovskite production,including,a femtosecond laser with an ultrashort pulse width and ultrahigh peak power with unique advantages such as high precision and efficiency,nonlinearity,and excellent material adaptability in perovskite material processing.Furthermore,femtosecond lasers can induce precipitation of perovskite inside glass/crystals,which markedly enhances the stability of perovskite materials and promotes their application and development in various fields.This review introduces perovskite precipitation and processing via femtosecond lasers.The methods involved and advantages of femtosecond-laser-induced perovskite precipitation and patterning are systematically summarized.The review also provides an outlook for further optimization and improvement of femtosecond laser preparation and processing methods for perovskites,which may offer significant support for future research and applications of perovskite materials.展开更多
基金funded by the National Natural Science Foundation of China(31760641,31750002)
文摘The subfamily Dinetinae W. Fox, genus Dinetus Panzer and species Dinetus arenarius Kazenas are reported from China for the first time. In addition, a key to the worldwide species of the genus Dinetus is provided. The examined specimens are deposited in the Insect Collections of Yunnan Agricultural University(YNAU), Kunming, Yunnan Province, China.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515011951,2023A1515012977,2024A1515010109)the National Natural Science Foundation of China(62375056)the Science and Technology Program of Guangzhou(202201010182).
文摘Perovskite materials have become a popular research topic because of their unique optical and electrical properties,that enable extensive applications in information storage,lasers,anti-counterfeiting,and planar lenses.However,the success of the application depends on accomplishing high-precision and high-quality perovskite patterning technology.Numerous methods have been proposed for perovskite production,including,a femtosecond laser with an ultrashort pulse width and ultrahigh peak power with unique advantages such as high precision and efficiency,nonlinearity,and excellent material adaptability in perovskite material processing.Furthermore,femtosecond lasers can induce precipitation of perovskite inside glass/crystals,which markedly enhances the stability of perovskite materials and promotes their application and development in various fields.This review introduces perovskite precipitation and processing via femtosecond lasers.The methods involved and advantages of femtosecond-laser-induced perovskite precipitation and patterning are systematically summarized.The review also provides an outlook for further optimization and improvement of femtosecond laser preparation and processing methods for perovskites,which may offer significant support for future research and applications of perovskite materials.