This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered load...This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered loading device.The prototype of the test is a coastal iron ore yard with a natural foundation of deep soft soil.Therefore,it is necessary to adopt some measures to reduce the influence of the large-scale surcharge on the adjacent raft foundation,such as installing stone columns for foundation treatment.Under an acceleration of 130 g,the model conducts similar simulations of iron ore,stone columns,and raft foundation structures.The tested soil mass has dimensions of 900 mm×700 mm×300 mm(lengthwidthdepth),which is remodeled from the soil extracted from the drilling holes.The test conditions are consistent with the actual engineering conditions and the effects of four-level loading conditions on the composite foundation of stone columns,unreinforced zone,and raft foundations are studied.An automatic layer-by-layer loading device was innovatively developed to simulate the loading process of actual engineering more realistically.The composite foundation of stone columns had a large settlement after the loading,forming an obvious settlement trough and causing the surface of the unreinforced zone to rise.The 12 m surcharge loading causes a horizontal displacement of 13.19 cm and a vertical settlement of 1.37 m in the raft foundation.The stone columns located on both sides of the unreinforced zone suffered significant shear damage at the sand-mud interface.Due to the reinforcement effect of stone columns,the sand layer below the top of the stone columns moves less.Meanwhile,the horizontal earth pressure in the raft foundation zone increases slowly.The stone columns will form new drainage channels and accelerate the dissipation of excess pore pressure.展开更多
We described potential changes in the geo- graphic distribution and occurrence probability of Pinus koraiensis Sieb. et Zucc. and Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. in the counties of northeast Chin...We described potential changes in the geo- graphic distribution and occurrence probability of Pinus koraiensis Sieb. et Zucc. and Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. in the counties of northeast China. This information was used to identify priority areas for protection and provide protection and management recommendations within each studied county. The two species were mapped in 2884 study plots throughout this region over a 4-year period (38°40'N-53°30'N, 115°05'E- 135°02'E). We used the species distribution models (Maxent), systematic conservation planning models (Marxan), and Geographic Information Systems (ArcGIS 10.0). The distributions of two species were correlated in the study area, enabling unique and economically viable joint conservation measures to be implemented. Three models were combined to identify feasible priority con- servation sites. We used local spatial statistics to assess all identified conservation areas in relation to potential climate change based shifts in the geographic distribution of the two species. Model-based conservation strategies were used to identify effective measures to protect and utilize these two tree species in the study region. This study pre- sents a novel technique for assessing wild plant distribu- tions, in addition to serving as a model for the conservation of other species within the framework of general forest management, ecological construction, and geographical surveying.展开更多
In addition to bacteria,the contribution of fungi to nitrous oxide(N_(2)O)production has been recognized but the responses of these two broad and unrelated groups of microorganisms to global environmental changes,atmo...In addition to bacteria,the contribution of fungi to nitrous oxide(N_(2)O)production has been recognized but the responses of these two broad and unrelated groups of microorganisms to global environmental changes,atmospheric nitrogen(N)deposition,and precipitation in terms of N_(2)O production are unclear.We studied how these two microbial-mediated N_(2)O production pathways responded to soil moisture conditions and to N addition in an N-limited temperate forest.Soils from a long-term N addition experiment in Changbai Mountain,northeastern China were incubated.Varied concentrations of cycloheximide and streptomycin,both inhibitors of fungal and bacterial activity,were used to determine the contributions of both to N_(2)O production in 66%,98%and 130%water-filled pore spaces(WFPS).The results showed that N_(2)O production decreased significantly with increasing cycloheximide concentration whereas streptomycin was only inhibiting N_(2)O emissions at 98%and 130%WFPS.The bacterial pathway of N_(2)O production in N-addition(Nadd)soil was significantly more dominant than that in untreated(Namb)soil.The difference in the fungal pathway of N_(2)O production between the soil with nitrogen addition and the untreated soil was not significant.Net N_(2)O emissions increased with increasing soil moisture,especially at 130%WFPS,a completely flooded condition.Bacteria dominated carbon dioxide(CO_(2))and N_(2)O emissions in Nadd soil and at 130%WFPS regardless of N status,while fungi dominated CO_(2)and N_(2)O emissions in soil without N addition at 66%and 98%WFPS.The results suggest that flooded soil is an important source of N_(2)O emissions and that bacteria might be better adapted to compete in fertile soils under anoxic conditions.展开更多
Background:The nitrogen isotope natural abundance(δ^(15)N)provides integrated information on ecosystem N dynamics,and carbon isotope natural abundance(δ^(13)C)has been used to infer how water-using processes of plan...Background:The nitrogen isotope natural abundance(δ^(15)N)provides integrated information on ecosystem N dynamics,and carbon isotope natural abundance(δ^(13)C)has been used to infer how water-using processes of plants change in terrestrial ecosystems.However,howδ^(13)C andδ^(15)N abundances in plant life and soils respond to N addition and water availability change is still unclear.Thus,δ^(13)C andδ^(15)N abundances in plant life and soils were used to investigate the effects of long-time(10 years)N addition(+50 kg N·ha^(−1)·yr^(−1)and precipitation reduction(−30%of throughfall)in forest C and N cycling traits in a temperate forest in northern China.Results:We analyzed theδ^(13)C andδ^(15)N values of dominant plant foliage,litterfall,fungal sporophores,roots,and soils in the study.The results showed thatδ^(15)N values of foliage,litterfall,and surface soil layer’s(0–10 cm)total N were significantly increased by N addition,whileδ^(15)N values of fine roots and coarse roots were considerably decreased.Nitrogen addition also significantly increased theδ^(13)C value of fine roots and total N concentration of the surface soil layer compared with the control.The C concentration,δ^(13)C,andδ^(15)N values of foliage andδ^(15)N values of fine roots were significantly increased by precipitation reduction,while N concentration of foliage and litterfall significantly decreased.The combined effects of N addition and precipitation reduction significantly increased theδ^(13)C andδ^(15)N values of foliage as well as theδ^(15)N values of fine roots andδ^(13)C values of litterfall.Furthermore,foliarδ^(15)N values were significantly correlated with foliageδ^(13)C values,surface soilδ^(15)N values,surface soil C concentration,and N concentrations.Nitrogen concentrations andδ^(13)C values of foliage were significantly correlated withδ^(15)N values and N concentrations of fine roots.Conclusions:This indicates that plants increasingly take up the heavier 15N under N addition and the heavier 13C and 15N under precipitation reduction,suggesting that N addition and precipitation reduction may lead to more open forest ecosystem C and N cycling and affect plant nutrient acquisition strategies.展开更多
Smog chambers are the effective tools for studying formation mechanisms of air pollution.Simulations by traditional smog chambers differ to a large extent from real atmospheric conditions,including light,temperature a...Smog chambers are the effective tools for studying formation mechanisms of air pollution.Simulations by traditional smog chambers differ to a large extent from real atmospheric conditions,including light,temperature and atmospheric composition.However,the existing parameters for mechanism interpretation are derived from the traditional smog chambers.To address the gap between the traditional laboratory simulations and the photochemistry in the real atmosphere,a vehicle-mounted indoor-outdoor dual-smog chamber(JNUVMDSC)was developed,which can be quickly transferred to the desired sites to simulate quasi-realistic atmosphere simultaneously in both chambers using“local air”.Multiple key parameters of the smog chamber were characterized in the study,demonstrating that JNUVMDSC meets the requirements of general atmospheric chemistry simulation studies.Additionally,the preliminary results for the photochemical simulations of quasi-realistic atmospheres in Pearl River Delta region and Nanling Mountains are consistent with literature reports on the photochemistry in this region.JNU-VMDSC provides a convenient and reliable experimental device and means to study the mechanism of atmospheric photochemical reactions to obtain near-real results,and will make a great contribution to the control of composite air pollution.展开更多
The effects of precipitation reduction and nitrogen deposition increase on soil bacterial communities and functions impact soil nitrogen cycling. Seasonal changes could modify the effects of precipitation reduction an...The effects of precipitation reduction and nitrogen deposition increase on soil bacterial communities and functions impact soil nitrogen cycling. Seasonal changes could modify the effects of precipitation reduction and nitrogen deposition increase on bacterial communities and functions by changing soil environments and properties. Understanding soil microbial communities and the seasonal response of functions to precipitation reduction and nitrogen deposition increase may be important for the accurate prediction of changes in the soil nitrogen dynamics. Thus, a long-term field simulation experiment of nitrogen deposition increase and throughfall exclusion was established to investigate soil bacterial communities’ response to nitrogen deposition increase and/or precipitation reduction, with no nitrogen deposition increase and no precipation reduction as a control, in a temperate forest. We examined soil bacterial communities(Illumina sequencing) under different treatments during the winter, freezing-thawing cycle periods(FTCs), and growing season. The bacterial functional groups were predicted by the FAPROTAX database. The results showed that nitrogen deposition increase, precipitation reduction, the combined effect of nitrogen deposition increase and precipitation reduction, and seasonal changes significantly altered the soil bacterial community composition.Interestingly, by combining the result of a previous study in which nitrogen deposition increase increased the nitrous oxide flux in the same experimental system, the loss of soil nitrogen was increased by the decrease in denitrification and increase of nitrification bacteria under nitrogen deposition increase,while ammonification bacteria significantly increased and N-fixing bacteria significantly decreased with precipitation reduction compared to the control. In relation to seasonal changes, the aromatic-degrading, cellulolytic, and ureolytic bacteria were lowest during FTCs, which indicated that FTCs might inhibit biodegradation. Nitrification and nitrite-oxidizing bacteria increased with nitrogen deposition increase or precipitation reduction and in FTCs compared to the control or other seasons. The interaction between treatment and season significantly changed the soil bacterial communities and functions. These results highlight that nitrogen deposition increase, precipitation reduction, seasonal changes, and their interactions might directly alter bacterial communities and indirectly alter the dynamics of soil N.展开更多
Aims The response pattern of terrestrial soil respiration to warming during non-growing seasons is a poorly understood phenomenon,though many believe that these warming effects are potentially significant.This study w...Aims The response pattern of terrestrial soil respiration to warming during non-growing seasons is a poorly understood phenomenon,though many believe that these warming effects are potentially significant.This study was conducted in a semiarid temperate steppe to examine the effects of warming during the non-growing seasons on soil respiration and the underlying mechanisms associated therewith.Methods This experiment was conducted in a semiarid temperate grassland and included 10 paired control and experimental plots.Experimental warming was achieved with open top chambers(OTCs)in October 2014.Soil respiration,soil temperature and soil moisture were measured several times monthly from November 2014 to April 2015 and from November 2015 to April 2016.Microbial biomass carbon(MBC),microbial biomass nitrogen(MBN)and available nitrogen content of soil were measured from 0 to 20 cm soil depth.Repeated measurement ANOVAs and paired-sample t tests were conducted to document the effect of warming,and the interactions between warming and time on the above variables.Simple regressions were employed to detect the underlying causality for the observed effects.Important Findings Soil respiration rate was 0.24μmol m^(−2) s^(−1) in the control plots during the non-growing seasons,which was roughly 14.4%of total soil carbon flux observed during growing seasons.Across the two non-growing seasons,warming treatment significantly increased soil temperature and soil respiration by 1.48℃(P<0.001)and 42.1%(P<0.01),respectively,when compared with control plots.Warming slightly,but did not significantly decrease soil moisture by 0.66%in the non-growing seasons from 2015 to 2016.In the non-growing seasons 2015–16,experimental warming significantly elevated MBC and MBN by 19.72%and 20.99%(both P<0.05),respectively.In addition,soil respiration responses to warming were regulated by changes in soil temperate,MBC and MBN.These findings indicate that changes in non-growing season soil respiration impact other components in the carbon cycle.Additionally,these findings facilitate projections regarding climate change–terrestrial carbon cycling.展开更多
基金funding support from National Key Research and Development Program of China(Grant No.2021YFF0502200)National Natural Science Foundation of China(Grant Nos.52022070 and 51978516).
文摘This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered loading device.The prototype of the test is a coastal iron ore yard with a natural foundation of deep soft soil.Therefore,it is necessary to adopt some measures to reduce the influence of the large-scale surcharge on the adjacent raft foundation,such as installing stone columns for foundation treatment.Under an acceleration of 130 g,the model conducts similar simulations of iron ore,stone columns,and raft foundation structures.The tested soil mass has dimensions of 900 mm×700 mm×300 mm(lengthwidthdepth),which is remodeled from the soil extracted from the drilling holes.The test conditions are consistent with the actual engineering conditions and the effects of four-level loading conditions on the composite foundation of stone columns,unreinforced zone,and raft foundations are studied.An automatic layer-by-layer loading device was innovatively developed to simulate the loading process of actual engineering more realistically.The composite foundation of stone columns had a large settlement after the loading,forming an obvious settlement trough and causing the surface of the unreinforced zone to rise.The 12 m surcharge loading causes a horizontal displacement of 13.19 cm and a vertical settlement of 1.37 m in the raft foundation.The stone columns located on both sides of the unreinforced zone suffered significant shear damage at the sand-mud interface.Due to the reinforcement effect of stone columns,the sand layer below the top of the stone columns moves less.Meanwhile,the horizontal earth pressure in the raft foundation zone increases slowly.The stone columns will form new drainage channels and accelerate the dissipation of excess pore pressure.
基金supported by the National Basic Research Priorities Program of the Ministry of Science and Technology of China(2014FY110600)the National Basic Research Program of China(2011CB403200)National Natural Science Foundation of China(41330530)
文摘We described potential changes in the geo- graphic distribution and occurrence probability of Pinus koraiensis Sieb. et Zucc. and Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. in the counties of northeast China. This information was used to identify priority areas for protection and provide protection and management recommendations within each studied county. The two species were mapped in 2884 study plots throughout this region over a 4-year period (38°40'N-53°30'N, 115°05'E- 135°02'E). We used the species distribution models (Maxent), systematic conservation planning models (Marxan), and Geographic Information Systems (ArcGIS 10.0). The distributions of two species were correlated in the study area, enabling unique and economically viable joint conservation measures to be implemented. Three models were combined to identify feasible priority con- servation sites. We used local spatial statistics to assess all identified conservation areas in relation to potential climate change based shifts in the geographic distribution of the two species. Model-based conservation strategies were used to identify effective measures to protect and utilize these two tree species in the study region. This study pre- sents a novel technique for assessing wild plant distribu- tions, in addition to serving as a model for the conservation of other species within the framework of general forest management, ecological construction, and geographical surveying.
基金the Key Research and Development Project from China’s Ministry of Science and Technology(2016YFA0600804)the National Natural Science Foundation of China[grant number 41575153,41430639,41673077,41675150 and 31800413]。
文摘In addition to bacteria,the contribution of fungi to nitrous oxide(N_(2)O)production has been recognized but the responses of these two broad and unrelated groups of microorganisms to global environmental changes,atmospheric nitrogen(N)deposition,and precipitation in terms of N_(2)O production are unclear.We studied how these two microbial-mediated N_(2)O production pathways responded to soil moisture conditions and to N addition in an N-limited temperate forest.Soils from a long-term N addition experiment in Changbai Mountain,northeastern China were incubated.Varied concentrations of cycloheximide and streptomycin,both inhibitors of fungal and bacterial activity,were used to determine the contributions of both to N_(2)O production in 66%,98%and 130%water-filled pore spaces(WFPS).The results showed that N_(2)O production decreased significantly with increasing cycloheximide concentration whereas streptomycin was only inhibiting N_(2)O emissions at 98%and 130%WFPS.The bacterial pathway of N_(2)O production in N-addition(Nadd)soil was significantly more dominant than that in untreated(Namb)soil.The difference in the fungal pathway of N_(2)O production between the soil with nitrogen addition and the untreated soil was not significant.Net N_(2)O emissions increased with increasing soil moisture,especially at 130%WFPS,a completely flooded condition.Bacteria dominated carbon dioxide(CO_(2))and N_(2)O emissions in Nadd soil and at 130%WFPS regardless of N status,while fungi dominated CO_(2)and N_(2)O emissions in soil without N addition at 66%and 98%WFPS.The results suggest that flooded soil is an important source of N_(2)O emissions and that bacteria might be better adapted to compete in fertile soils under anoxic conditions.
基金from National Natural Science Foundation of China(Grant Nos:41773075,41575137,31370494,31170421).
文摘Background:The nitrogen isotope natural abundance(δ^(15)N)provides integrated information on ecosystem N dynamics,and carbon isotope natural abundance(δ^(13)C)has been used to infer how water-using processes of plants change in terrestrial ecosystems.However,howδ^(13)C andδ^(15)N abundances in plant life and soils respond to N addition and water availability change is still unclear.Thus,δ^(13)C andδ^(15)N abundances in plant life and soils were used to investigate the effects of long-time(10 years)N addition(+50 kg N·ha^(−1)·yr^(−1)and precipitation reduction(−30%of throughfall)in forest C and N cycling traits in a temperate forest in northern China.Results:We analyzed theδ^(13)C andδ^(15)N values of dominant plant foliage,litterfall,fungal sporophores,roots,and soils in the study.The results showed thatδ^(15)N values of foliage,litterfall,and surface soil layer’s(0–10 cm)total N were significantly increased by N addition,whileδ^(15)N values of fine roots and coarse roots were considerably decreased.Nitrogen addition also significantly increased theδ^(13)C value of fine roots and total N concentration of the surface soil layer compared with the control.The C concentration,δ^(13)C,andδ^(15)N values of foliage andδ^(15)N values of fine roots were significantly increased by precipitation reduction,while N concentration of foliage and litterfall significantly decreased.The combined effects of N addition and precipitation reduction significantly increased theδ^(13)C andδ^(15)N values of foliage as well as theδ^(15)N values of fine roots andδ^(13)C values of litterfall.Furthermore,foliarδ^(15)N values were significantly correlated with foliageδ^(13)C values,surface soilδ^(15)N values,surface soil C concentration,and N concentrations.Nitrogen concentrations andδ^(13)C values of foliage were significantly correlated withδ^(15)N values and N concentrations of fine roots.Conclusions:This indicates that plants increasingly take up the heavier 15N under N addition and the heavier 13C and 15N under precipitation reduction,suggesting that N addition and precipitation reduction may lead to more open forest ecosystem C and N cycling and affect plant nutrient acquisition strategies.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.41877370 and 42077190)the China Postdoctoral Science Foundation(No.2021M691229)+2 种基金the fund of Creative Research Groups of NSFC(No.42121004)the Science and Technology Planning Project of Guangdong Province of China(No.2019B121202002)the Guangdong Innovative and Entrepreneurial Research Team Program(No.2016ZT06N263).
文摘Smog chambers are the effective tools for studying formation mechanisms of air pollution.Simulations by traditional smog chambers differ to a large extent from real atmospheric conditions,including light,temperature and atmospheric composition.However,the existing parameters for mechanism interpretation are derived from the traditional smog chambers.To address the gap between the traditional laboratory simulations and the photochemistry in the real atmosphere,a vehicle-mounted indoor-outdoor dual-smog chamber(JNUVMDSC)was developed,which can be quickly transferred to the desired sites to simulate quasi-realistic atmosphere simultaneously in both chambers using“local air”.Multiple key parameters of the smog chamber were characterized in the study,demonstrating that JNUVMDSC meets the requirements of general atmospheric chemistry simulation studies.Additionally,the preliminary results for the photochemical simulations of quasi-realistic atmospheres in Pearl River Delta region and Nanling Mountains are consistent with literature reports on the photochemistry in this region.JNU-VMDSC provides a convenient and reliable experimental device and means to study the mechanism of atmospheric photochemical reactions to obtain near-real results,and will make a great contribution to the control of composite air pollution.
基金financially supported by the National Natural Science Foundation of China(41930643)supported by grants from European Union H2020 Marie Skłodowska-Curie Actions(839806)+2 种基金Aarhus University Research Foundation(AUFF-E-2019-7-1)Danish Independent Research Foundation(1127-00015B)Nordic Committee of Agriculture and Food Research.
基金This research was part of the project Global Change and Response which is supported by the National Key Research and Development Program of China(No.2016YFA0600800)and the National Natural Science Foundation of China(Nos.41773075,41575137,31370494,and 31170421).
文摘The effects of precipitation reduction and nitrogen deposition increase on soil bacterial communities and functions impact soil nitrogen cycling. Seasonal changes could modify the effects of precipitation reduction and nitrogen deposition increase on bacterial communities and functions by changing soil environments and properties. Understanding soil microbial communities and the seasonal response of functions to precipitation reduction and nitrogen deposition increase may be important for the accurate prediction of changes in the soil nitrogen dynamics. Thus, a long-term field simulation experiment of nitrogen deposition increase and throughfall exclusion was established to investigate soil bacterial communities’ response to nitrogen deposition increase and/or precipitation reduction, with no nitrogen deposition increase and no precipation reduction as a control, in a temperate forest. We examined soil bacterial communities(Illumina sequencing) under different treatments during the winter, freezing-thawing cycle periods(FTCs), and growing season. The bacterial functional groups were predicted by the FAPROTAX database. The results showed that nitrogen deposition increase, precipitation reduction, the combined effect of nitrogen deposition increase and precipitation reduction, and seasonal changes significantly altered the soil bacterial community composition.Interestingly, by combining the result of a previous study in which nitrogen deposition increase increased the nitrous oxide flux in the same experimental system, the loss of soil nitrogen was increased by the decrease in denitrification and increase of nitrification bacteria under nitrogen deposition increase,while ammonification bacteria significantly increased and N-fixing bacteria significantly decreased with precipitation reduction compared to the control. In relation to seasonal changes, the aromatic-degrading, cellulolytic, and ureolytic bacteria were lowest during FTCs, which indicated that FTCs might inhibit biodegradation. Nitrification and nitrite-oxidizing bacteria increased with nitrogen deposition increase or precipitation reduction and in FTCs compared to the control or other seasons. The interaction between treatment and season significantly changed the soil bacterial communities and functions. These results highlight that nitrogen deposition increase, precipitation reduction, seasonal changes, and their interactions might directly alter bacterial communities and indirectly alter the dynamics of soil N.
基金supported by the National Natural Science Foundation of China(31670477,31800399)China Postdoctoral Science Foundation(2018M642738,2018M642739)Henan Province Foundation and Advanced Technology Project(192102110085).
文摘Aims The response pattern of terrestrial soil respiration to warming during non-growing seasons is a poorly understood phenomenon,though many believe that these warming effects are potentially significant.This study was conducted in a semiarid temperate steppe to examine the effects of warming during the non-growing seasons on soil respiration and the underlying mechanisms associated therewith.Methods This experiment was conducted in a semiarid temperate grassland and included 10 paired control and experimental plots.Experimental warming was achieved with open top chambers(OTCs)in October 2014.Soil respiration,soil temperature and soil moisture were measured several times monthly from November 2014 to April 2015 and from November 2015 to April 2016.Microbial biomass carbon(MBC),microbial biomass nitrogen(MBN)and available nitrogen content of soil were measured from 0 to 20 cm soil depth.Repeated measurement ANOVAs and paired-sample t tests were conducted to document the effect of warming,and the interactions between warming and time on the above variables.Simple regressions were employed to detect the underlying causality for the observed effects.Important Findings Soil respiration rate was 0.24μmol m^(−2) s^(−1) in the control plots during the non-growing seasons,which was roughly 14.4%of total soil carbon flux observed during growing seasons.Across the two non-growing seasons,warming treatment significantly increased soil temperature and soil respiration by 1.48℃(P<0.001)and 42.1%(P<0.01),respectively,when compared with control plots.Warming slightly,but did not significantly decrease soil moisture by 0.66%in the non-growing seasons from 2015 to 2016.In the non-growing seasons 2015–16,experimental warming significantly elevated MBC and MBN by 19.72%and 20.99%(both P<0.05),respectively.In addition,soil respiration responses to warming were regulated by changes in soil temperate,MBC and MBN.These findings indicate that changes in non-growing season soil respiration impact other components in the carbon cycle.Additionally,these findings facilitate projections regarding climate change–terrestrial carbon cycling.