To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vi...To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and at- tenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compart- ments was similar. These results have great significance for enhanced understanding of the characteristics of wain-induced vibra- tion embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions.展开更多
The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during ...The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during flight.The first-order fundamental frequencies and their corresponding damping characteristics of the vertical stabilizer skin structure tow-steered by automatic fiber placement technique were optimized with the parameterized trajectories and plies as design variables.Firstly,the vibration and damping numerical models were derived based on Kirchhoff laminate theory,the Rayleigh-Ritz method,and the Strain Energy Method.Then the optimization model was developed by adopting the self-adaptive Differential Evolution Multi-objective optimization algorithm and incorporating the solution method of Pareto Front.The constraints of this optimization model considered the experimentally obtained minimum turning radius of prepregs tow-steered in automatic fiber placement process obtained from experimental tests.Finally,the comparison of numerical simulation results was conducted for the optimized trajectories and the conventional straight trajectories under various boundary conditions,and the numerical results were partially validated through damping and frequency tests.The results indicate the vibration characteristics of the composite vertical stabilizer skin structure can be enhanced to a large extent by optimizing fiber trajectories,and the enhancement percentage is affected by the boundary conditions of the actual structure.展开更多
A multi-objective optimization method was proposed for different dome reinforcement methods of a filament-wound solid rocket motor composite case based on a Radial Basis Function(RBF)model.Progressive damage of the co...A multi-objective optimization method was proposed for different dome reinforcement methods of a filament-wound solid rocket motor composite case based on a Radial Basis Function(RBF)model.Progressive damage of the composite case was considered in a simulation based on Hashin failure criteria,and simulation results were validated by hydraulic burst tests to precisely predict the failure mode,failure position,and burst pressure.An RBF surrogate model was estab-lished and evaluated by Relative Average Absolute Error(RAAE),Relative Maximum Absolute Error(RMAE),Root Mean Squared Error(RMSE),and R^(2)methods to improve the optimization efficient of dome reinforcement.In addition,the Non-dominated Sorting Genetic Algorithm(NSGA-II)was employed to establish multi-objective optimization models of variable-angle and variable-polar-radius dome reinforcements to investigate the coupling effect of the reinforcement angle,reinforcement layers,and reinforcement range on the case performance.Optimal reinforce-ment parameters were obtained and used to establish a progressive damage model of the composite case with dome reinforcement.In accordance with progressive damage analysis,the burst pressure and performance factor were obtained.Results illustrated that variable-angle dome reinforcement was the optimal reinforcement method compared with variable-polar-radius dome reinforcement as it could not only ensure the reinforcement angle’s continuous changing but also decrease the mass of composite materials.Compared with the unreinforced case,the reinforced case exhibited an increase in the burst pressure and performance factor of 36.1%and 23.5%,respectively.展开更多
The 6th generation(6G)wireless networks will likely to support a variety of capabilities beyond communication,such as sensing and localization,through the use of communication networks empowered by advanced technologi...The 6th generation(6G)wireless networks will likely to support a variety of capabilities beyond communication,such as sensing and localization,through the use of communication networks empowered by advanced technologies.Integrated sensing and communication(ISAC)has been recognized as a critical technology as well as a usage scenario for 6G,as widely agreed by leading global standardization bodies.ISAC utilizes communication infrastructure and devices to provide the capability of sensing the environment with high resolution,as well as tracking and localizing moving objects nearby.Meeting both the requirements for communication and sensing simultaneously,ISAC-based approaches celebrate the advantages of higher spectral and energy efficiency compared to two separate systems to serve two purposes,and potentially lower costs and easy deployment.A key step towards the standardization and commercialization of ISAC is to carry out comprehensive field trials in practical networks,such as the 5th generation(5G)networks,to demonstrate its true capacities in practical scenarios.In this paper,an ISAC-based outdoor multi-target detection,tracking and localization approach is proposed and validated in 5G networks.The proposed system comprises of 5G base stations(BSs)which serve nearby mobile users normally,while accomplishing the task of detecting,tracking,and localizing drones,vehicles,and pedestrians simultaneously.Comprehensive trial results demonstrate the relatively high accuracy of the proposed method in practical outdoor environment when tracking and localizing single targets and multiple targets.展开更多
Killer immunoglobulin-like receptor (KIR) genes can regulate the activation of NK and T cells upon interaction with HLA class I molecules. Hepatitis B virus (HBV) infection has been regarded as a multi-factorial d...Killer immunoglobulin-like receptor (KIR) genes can regulate the activation of NK and T cells upon interaction with HLA class I molecules. Hepatitis B virus (HBV) infection has been regarded as a multi-factorial disorder disease. Previous studies revealed that KIRs were involved in HCV and HIV infection or clearance. The aim of this study was to explore the possibility of the inheritance of KIR genotypes and haplotypes as a candidate for susceptibility to persistent HBV infection or HBV clearance. The sequence specific primer polymerase chain reaction (SSP-PCR) was employed to identify the KIR genes and pseudogenes in 150 chronic hepatitis B (CHB) patients, 251 spontaneously recovered (SR) controls, and 412 healthy controls. The frequencies of genotype G7 M, FZ1 increased in CHB patients compared with healthy control subjects. The frequency of genotype AH was higher in SR controls than that in both CHB patients and healthy controls. The carriage frequencies of genotype G and AH were higher; while, the frequencies of AF and AJ were lower in SR controls than those in healthy control subjects. The frequency of A haplotype was lower, whereas, the frequency of B haplotype was higher in CHB patients and SR controls than those in healthy controls. In healthy controls, haplotype 4 was found lower compared with that in CHB patients and SR controls and the frequency of haplotype 5 was higher in SR controls than that in other two groups. Based on these findings, it seems that the genotypes M and FZ1 are HBV susceptive genotypes; AH, on the other hand, may be protective genotypes that facilitate the clearance of HBV. It appears that the haplotype 4 is HBV susceptive haplotype, whereas, haplotype 5 may be the protective haplotype that facilitates the clearance of HBV. Cellular & Molecular Immunology. 2008;5(6):457-463.展开更多
基金supported by the 973 Program of China (Grant No. 2012CB026104)the National Natural Science Foundation of China (Grant Nos. 51174261 and 51078111)+1 种基金the Open Research Fund Program of the State Key Laboratory of Permafrost Engineering of China (Grant No. SKLFSE201007)the Ministry of Railways Science and Technology Research and Development Program (Grant No. 2009G010-E)
文摘To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and at- tenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compart- ments was similar. These results have great significance for enhanced understanding of the characteristics of wain-induced vibra- tion embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions.
基金co-supported by the National Natural Science Foundation of China(Nos.51875159,52175311,52175133,12102115,52005446)the Fok Ying Tung Education Foundation,China(No.171046)the Fundamental Research Funds for the Central Universities,China(Nos.JZ2021HGTA0178,JZ2020HGQA0197)。
文摘The vibration characteristics of composite vertical stabilizer skin structures play a critical role in damping effects designed for overcoming the air disturbances experienced by aircraft structural components during flight.The first-order fundamental frequencies and their corresponding damping characteristics of the vertical stabilizer skin structure tow-steered by automatic fiber placement technique were optimized with the parameterized trajectories and plies as design variables.Firstly,the vibration and damping numerical models were derived based on Kirchhoff laminate theory,the Rayleigh-Ritz method,and the Strain Energy Method.Then the optimization model was developed by adopting the self-adaptive Differential Evolution Multi-objective optimization algorithm and incorporating the solution method of Pareto Front.The constraints of this optimization model considered the experimentally obtained minimum turning radius of prepregs tow-steered in automatic fiber placement process obtained from experimental tests.Finally,the comparison of numerical simulation results was conducted for the optimized trajectories and the conventional straight trajectories under various boundary conditions,and the numerical results were partially validated through damping and frequency tests.The results indicate the vibration characteristics of the composite vertical stabilizer skin structure can be enhanced to a large extent by optimizing fiber trajectories,and the enhancement percentage is affected by the boundary conditions of the actual structure.
基金co-supported by the National Natural Science Foundation of China(52175311,52175133,12102115,52005446)the Fundamental Research Funds for Central Universities in China(JZ2021HGTA0178,JZ2022HGQA0150).
文摘A multi-objective optimization method was proposed for different dome reinforcement methods of a filament-wound solid rocket motor composite case based on a Radial Basis Function(RBF)model.Progressive damage of the composite case was considered in a simulation based on Hashin failure criteria,and simulation results were validated by hydraulic burst tests to precisely predict the failure mode,failure position,and burst pressure.An RBF surrogate model was estab-lished and evaluated by Relative Average Absolute Error(RAAE),Relative Maximum Absolute Error(RMAE),Root Mean Squared Error(RMSE),and R^(2)methods to improve the optimization efficient of dome reinforcement.In addition,the Non-dominated Sorting Genetic Algorithm(NSGA-II)was employed to establish multi-objective optimization models of variable-angle and variable-polar-radius dome reinforcements to investigate the coupling effect of the reinforcement angle,reinforcement layers,and reinforcement range on the case performance.Optimal reinforce-ment parameters were obtained and used to establish a progressive damage model of the composite case with dome reinforcement.In accordance with progressive damage analysis,the burst pressure and performance factor were obtained.Results illustrated that variable-angle dome reinforcement was the optimal reinforcement method compared with variable-polar-radius dome reinforcement as it could not only ensure the reinforcement angle’s continuous changing but also decrease the mass of composite materials.Compared with the unreinforced case,the reinforced case exhibited an increase in the burst pressure and performance factor of 36.1%and 23.5%,respectively.
文摘The 6th generation(6G)wireless networks will likely to support a variety of capabilities beyond communication,such as sensing and localization,through the use of communication networks empowered by advanced technologies.Integrated sensing and communication(ISAC)has been recognized as a critical technology as well as a usage scenario for 6G,as widely agreed by leading global standardization bodies.ISAC utilizes communication infrastructure and devices to provide the capability of sensing the environment with high resolution,as well as tracking and localizing moving objects nearby.Meeting both the requirements for communication and sensing simultaneously,ISAC-based approaches celebrate the advantages of higher spectral and energy efficiency compared to two separate systems to serve two purposes,and potentially lower costs and easy deployment.A key step towards the standardization and commercialization of ISAC is to carry out comprehensive field trials in practical networks,such as the 5th generation(5G)networks,to demonstrate its true capacities in practical scenarios.In this paper,an ISAC-based outdoor multi-target detection,tracking and localization approach is proposed and validated in 5G networks.The proposed system comprises of 5G base stations(BSs)which serve nearby mobile users normally,while accomplishing the task of detecting,tracking,and localizing drones,vehicles,and pedestrians simultaneously.Comprehensive trial results demonstrate the relatively high accuracy of the proposed method in practical outdoor environment when tracking and localizing single targets and multiple targets.
基金supported by grants from the National Natural Science Foundation of China (No. 30371304)Shandong Provincial Natural Science Foundation (YZ2006C72) to Dr. Y.R. Zhao
文摘Killer immunoglobulin-like receptor (KIR) genes can regulate the activation of NK and T cells upon interaction with HLA class I molecules. Hepatitis B virus (HBV) infection has been regarded as a multi-factorial disorder disease. Previous studies revealed that KIRs were involved in HCV and HIV infection or clearance. The aim of this study was to explore the possibility of the inheritance of KIR genotypes and haplotypes as a candidate for susceptibility to persistent HBV infection or HBV clearance. The sequence specific primer polymerase chain reaction (SSP-PCR) was employed to identify the KIR genes and pseudogenes in 150 chronic hepatitis B (CHB) patients, 251 spontaneously recovered (SR) controls, and 412 healthy controls. The frequencies of genotype G7 M, FZ1 increased in CHB patients compared with healthy control subjects. The frequency of genotype AH was higher in SR controls than that in both CHB patients and healthy controls. The carriage frequencies of genotype G and AH were higher; while, the frequencies of AF and AJ were lower in SR controls than those in healthy control subjects. The frequency of A haplotype was lower, whereas, the frequency of B haplotype was higher in CHB patients and SR controls than those in healthy controls. In healthy controls, haplotype 4 was found lower compared with that in CHB patients and SR controls and the frequency of haplotype 5 was higher in SR controls than that in other two groups. Based on these findings, it seems that the genotypes M and FZ1 are HBV susceptive genotypes; AH, on the other hand, may be protective genotypes that facilitate the clearance of HBV. It appears that the haplotype 4 is HBV susceptive haplotype, whereas, haplotype 5 may be the protective haplotype that facilitates the clearance of HBV. Cellular & Molecular Immunology. 2008;5(6):457-463.