In this paper,we propose a two-tiered segment-based Device-toDevice(S-D2D)caching approach to decrease the startup and playback delay experienced by Video-on-Demand(VoD)users in a cellular network.In the S-D2D caching...In this paper,we propose a two-tiered segment-based Device-toDevice(S-D2D)caching approach to decrease the startup and playback delay experienced by Video-on-Demand(VoD)users in a cellular network.In the S-D2D caching approach cache space of each mobile device is divided into two cache-blocks.The rst cache-block reserve for caching and delivering the beginning portion of the most popular video les and the second cacheblock caches the latter portion of the requested video les‘fully or partially’depending on the users’video watching behaviour and popularity of videos.In this approach before caching,video is divided and grouped in a sequence of xed-sized fragments called segments.To control the admission to both cacheblocks and improve the system throughput,we further propose and evaluate three cache admission control algorithms.We also propose a video segment access protocol to elaborate on how to cache and share the video segments in a segmentation based D2D caching architecture.We formulate an optimisation problem and nd the optimal cache probability and beginning-segment size that maximise the cache-throughput probability of beginning-segments.To solve the non-convex cache-throughout maximisation problem,we derive an iterative algorithm,where the optimal solution is derived in each step.We used extensive simulations to evaluate the performance of our proposed S-D2D caching system.展开更多
基金The author F.W.would like to express their gratitude to the Baihang university,Beijing,China for their nancial and technical support under Code No.BU/IFC/INT/01/008.
文摘In this paper,we propose a two-tiered segment-based Device-toDevice(S-D2D)caching approach to decrease the startup and playback delay experienced by Video-on-Demand(VoD)users in a cellular network.In the S-D2D caching approach cache space of each mobile device is divided into two cache-blocks.The rst cache-block reserve for caching and delivering the beginning portion of the most popular video les and the second cacheblock caches the latter portion of the requested video les‘fully or partially’depending on the users’video watching behaviour and popularity of videos.In this approach before caching,video is divided and grouped in a sequence of xed-sized fragments called segments.To control the admission to both cacheblocks and improve the system throughput,we further propose and evaluate three cache admission control algorithms.We also propose a video segment access protocol to elaborate on how to cache and share the video segments in a segmentation based D2D caching architecture.We formulate an optimisation problem and nd the optimal cache probability and beginning-segment size that maximise the cache-throughput probability of beginning-segments.To solve the non-convex cache-throughout maximisation problem,we derive an iterative algorithm,where the optimal solution is derived in each step.We used extensive simulations to evaluate the performance of our proposed S-D2D caching system.