In this paper we discuss the global optimality of vector lengths for lattice bases. By introducing a partial order on lattice bases and the concept of successive minimal basis (SMB for short), we show that any of it...In this paper we discuss the global optimality of vector lengths for lattice bases. By introducing a partial order on lattice bases and the concept of successive minimal basis (SMB for short), we show that any of its minimal elements is a general greedy-reduced basis, and its least element (if exists) is an SMB. Furthermore, we prove the existence of SMB for lattices of dimension up to 6.展开更多
The present paper contains two interrelated developments. First, the basic properties of the construction theory over the Steinberg Lie color algebras are developed in analogy with Steinberg Lie algebra case. This is ...The present paper contains two interrelated developments. First, the basic properties of the construction theory over the Steinberg Lie color algebras are developed in analogy with Steinberg Lie algebra case. This is done on the example of the central closed of the Steinberg Lie color algebras. The second development is that we define the first ε-cyclic homology group HC1 (R, ε) of the F-graded associative algebra R (which could be seemed as the generalization of cyclic homology group and the Z/2Z-graded version of cyclic homology that was introduced by Kassel) to calculate the universal central extension of Steinberg Lie color algebras.展开更多
文摘In this paper we discuss the global optimality of vector lengths for lattice bases. By introducing a partial order on lattice bases and the concept of successive minimal basis (SMB for short), we show that any of its minimal elements is a general greedy-reduced basis, and its least element (if exists) is an SMB. Furthermore, we prove the existence of SMB for lattices of dimension up to 6.
文摘The present paper contains two interrelated developments. First, the basic properties of the construction theory over the Steinberg Lie color algebras are developed in analogy with Steinberg Lie algebra case. This is done on the example of the central closed of the Steinberg Lie color algebras. The second development is that we define the first ε-cyclic homology group HC1 (R, ε) of the F-graded associative algebra R (which could be seemed as the generalization of cyclic homology group and the Z/2Z-graded version of cyclic homology that was introduced by Kassel) to calculate the universal central extension of Steinberg Lie color algebras.