期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非缠结缔合高分子的熔体拉伸性能 被引量:1
1
作者 杨欢欢 吴世龙 +2 位作者 陈红兵 张志杰 陈全 《中国科学:化学》 CAS CSCD 北大核心 2023年第4期580-593,共14页
缔合高分子是指链间具有吸引作用(如离子键、氢键作用)的高分子.理解缔合高分子的熔体拉伸性能对于缔合高分子材料的开发和加工成型具有重要的指导意义.本综述聚焦本课题组在非缠结缔合高分子熔体拉伸行为研究中的最新进展,对熔体拉伸... 缔合高分子是指链间具有吸引作用(如离子键、氢键作用)的高分子.理解缔合高分子的熔体拉伸性能对于缔合高分子材料的开发和加工成型具有重要的指导意义.本综述聚焦本课题组在非缠结缔合高分子熔体拉伸行为研究中的最新进展,对熔体拉伸行为进行分类(如脆性行为、韧性行为和超韧性行为),并进一步总结了熔体拉伸行为对于缔合程度、缔合强度和缔合种类的依赖性.研究表明,脆韧行为不仅取决于拉伸流场下缔合网络结构的破坏,而且取决于网络结构破坏后的重整行为. 展开更多
关键词 缔合高分子 熔体拉伸 网络结构 破坏与重组
原文传递
Visualizing large-scale high-dimensional data via hierarchical embedding of KNN graphs 被引量:2
2
作者 Haiyang Zhu Minfeng Zhu +5 位作者 Yingchaojie Feng Deng Cai Yuanzhe Hu shilong wu Xiangyang wu Wei Chen 《Visual Informatics》 EI 2021年第2期51-59,共9页
Visualizing intrinsic structures of high-dimensional data is an essential task in data analysis.Over the past decades,a large number of methods have been proposed.Among all solutions,one promising way for enabling eff... Visualizing intrinsic structures of high-dimensional data is an essential task in data analysis.Over the past decades,a large number of methods have been proposed.Among all solutions,one promising way for enabling effective visual exploration is to construct a k-nearest neighbor(KNN)graph and visualize the graph in a low-dimensional space.Yet,state-of-the-art methods such as the LargeVis still suffer from two main problems when applied to large-scale data:(1)they may produce unappealing visualizations due to the non-convexity of the cost function;(2)visualizing the KNN graph is still time-consuming.In this work,we propose a novel visualization algorithm that leverages a multilevel representation to achieve a high-quality graph layout and employs a cluster-based approximation scheme to accelerate the KNN graph layout.Experiments on various large-scale datasets indicate that our approach achieves a speedup by a factor of five for KNN graph visualization compared to LargeVis and yields aesthetically pleasing visualization results. 展开更多
关键词 High-dimensional data visualization KNN graph Graph visualization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部