The molecular dynamics simulation is applied to investigate the influence of the incident ion energy and incident angular distribution upon ion-assisted deposition process. The Cu-Cu and Ar-Cu interactions are modeled...The molecular dynamics simulation is applied to investigate the influence of the incident ion energy and incident angular distribution upon ion-assisted deposition process. The Cu-Cu and Ar-Cu interactions are modeled using the many body tight-binding potential and the Moliere potential, respectively, and the interface width is used to characterize the surface roughness properties at both transient and final state conditions. The results show that the surface roughness of the deposition film is lower when more Ar-to-Cu ratio is used at the same incident energy and angle. For the relative low or high incident energy, the film morphologies are not sensitive to the incident angle. However, if the incident energy of the argon ions is too high, the film morphology will be worse than that without using the ion-assisted deposition.展开更多
文摘The molecular dynamics simulation is applied to investigate the influence of the incident ion energy and incident angular distribution upon ion-assisted deposition process. The Cu-Cu and Ar-Cu interactions are modeled using the many body tight-binding potential and the Moliere potential, respectively, and the interface width is used to characterize the surface roughness properties at both transient and final state conditions. The results show that the surface roughness of the deposition film is lower when more Ar-to-Cu ratio is used at the same incident energy and angle. For the relative low or high incident energy, the film morphologies are not sensitive to the incident angle. However, if the incident energy of the argon ions is too high, the film morphology will be worse than that without using the ion-assisted deposition.