In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order...In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order(LPSO)phase was firstly introduced to improve both the mechanical properties and degradation rate of magnesium alloys.With the increase of LPSO phase,the compressive strength was improved significantly,while the elongation of the alloys decreased owing to the relatively brittle nature of LPSO phase.Due to the higher corrosion potential of LPSO phase,the LPSO phase can accelerate the corrosion process by providing more micro-couples.However,the LPSO phase would serve as the corrosion barrier between the corrosion medium and the matrix when the contents of LPSO phase are too high in Mg92.5Ni3Y4.5 and Mg87.5Ni5Y7.5 alloys.As-cast Mg97.5Ni1Y1.5 alloy with satisfactory mechanical properties and rapid degradation rate was successfully developed,exhibiting a high degradation rate of 6675 mm/a(93℃)in 3 wt.%KCl solution and a favorable ultimate compressive strength of 410 MPa.The degradation rate of Mg97.5Ni1Y1.5 alloy is 2-5 times of the current commercial magnesium alloy fracturing materials.展开更多
Phage-encoded homologous recombination(PEHR)is an efficient tool for bacterial genome editing.We previously developed and utilized a Pseudomonas-specific PEHR system.However,when using the PEHR system for Pseu-domonas...Phage-encoded homologous recombination(PEHR)is an efficient tool for bacterial genome editing.We previously developed and utilized a Pseudomonas-specific PEHR system.However,when using the PEHR system for Pseu-domonas genome editing,false positives can be a problem.In this study,we combined a compact Cascade-Cas3 system from P.aeruginosa(PaeCas3c)with a Pseudomonas-specific PEHR system,and the results of our recom-bineering assay showed that this compact Cascade-Cas3 system can significantly improve PEHR recombineering accuracy.展开更多
基金This work is financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0301100)the Chongqing Foundation and Advanced Research Project(Grant No.cstc2019jcyj-zdxmX0010)+1 种基金the Natural Science Foundation Commission of China(Grant No.51571044 and 51874062)Fundamental Research Funds for the Central Universities(Grant No.2018CDGFCL0005 and 2019CDXYCL0031).
文摘In this work,as-cast Mg-Ni-Y alloys were proposed to develop a feasible material for fracturing balls,and their mechanical performance and corrosion behavior were systematically investigated.Long period stacking order(LPSO)phase was firstly introduced to improve both the mechanical properties and degradation rate of magnesium alloys.With the increase of LPSO phase,the compressive strength was improved significantly,while the elongation of the alloys decreased owing to the relatively brittle nature of LPSO phase.Due to the higher corrosion potential of LPSO phase,the LPSO phase can accelerate the corrosion process by providing more micro-couples.However,the LPSO phase would serve as the corrosion barrier between the corrosion medium and the matrix when the contents of LPSO phase are too high in Mg92.5Ni3Y4.5 and Mg87.5Ni5Y7.5 alloys.As-cast Mg97.5Ni1Y1.5 alloy with satisfactory mechanical properties and rapid degradation rate was successfully developed,exhibiting a high degradation rate of 6675 mm/a(93℃)in 3 wt.%KCl solution and a favorable ultimate compressive strength of 410 MPa.The degradation rate of Mg97.5Ni1Y1.5 alloy is 2-5 times of the current commercial magnesium alloy fracturing materials.
基金supported by grants from the National Key R&D Program of China(2019YFA0904000)the National Natural Science Foundation of China(31570094 and 81502962)+7 种基金the 111 Project(B16030)the Science and Technology Development Program of Suzhou(SYG201507)the Natural Science Foundation of Jiangsu Province(BK20160368)the Key Programs of Frontier Scientific Research of the Chinese Academy of Sciences(QYZDY-SSW-SMC008)the State Key Laboratory of Microbial Technology Open Projects Fund(M2017-05)the Shandong Provincial Natural Science Foundation of China(ZR2020MC015)to R.L.the Huxiang Youth Excellent(2017RS3029)to J.Y.the Taishan Scholar Program of Shandong Province to J.F.
文摘Phage-encoded homologous recombination(PEHR)is an efficient tool for bacterial genome editing.We previously developed and utilized a Pseudomonas-specific PEHR system.However,when using the PEHR system for Pseu-domonas genome editing,false positives can be a problem.In this study,we combined a compact Cascade-Cas3 system from P.aeruginosa(PaeCas3c)with a Pseudomonas-specific PEHR system,and the results of our recom-bineering assay showed that this compact Cascade-Cas3 system can significantly improve PEHR recombineering accuracy.