The erect panicle (Ep) type is an important characteristic for japonica super rice in Northeast China and plays a significant role in enhancing yield. The Ep type is considered to be a genetic ideotype resource to t...The erect panicle (Ep) type is an important characteristic for japonica super rice in Northeast China and plays a significant role in enhancing yield. The Ep type is considered to be a genetic ideotype resource to the japonica super rice group by virtue of its agronomic advantages such as grain number per panicle and biomass. This study addresses the effects of nitrogen and planting density conditions on yielding performance regarding panicle type (PT) using the recombinant inbred line (RIL) population derived from the cross between an Ep variety Liaogeng 5 and non-Ep variety Wanlun 422. The genetics underlying the Ep type proved to be robust not only for panicle-type optimization but also plant height, panicle length, flag leaf length and seed density. We also found that regardless of nitrogen and density, correlation between harvest index (HI) and plant height was not significant in Ep type whatever the nitrogen and density. The application of Ep type provides a potential strategy for yield improvement by increasing biomass through HI maintainable in rice.展开更多
The dense and erect panicle (EP) genotype conferred by DEP1 has been widely used in the breeding of high-yield Chinese japonica rice varieties.However,the breeding value of the EP genotype has rarely been determined a...The dense and erect panicle (EP) genotype conferred by DEP1 has been widely used in the breeding of high-yield Chinese japonica rice varieties.However,the breeding value of the EP genotype has rarely been determined at the plant population level.Therefore,the effects of the interaction of EP genotype and the environment at different locations and times on rice yield and its various components were investigated in this study.Two sets of near-isogenic lines (NILs)of EP and non-EP (NEP) genotypes with Liaojing 5 (LG5) and Akitakomachi (AKI) backgrounds were grown in the field in 2016 and 2017 in Shenyang,China,and Kyoto,Japan.In 2018,these sets were grown only in Kyoto,Japan.The average yields of the EP and NEP genotypes were 6.67 and 6.13 t ha^(-1)for the AKI background,and 6.66 and 6.58 t ha^(-1)for the LG5 background,respectively.The EP genotype positively affected panicle number (PN) and grain number per square meter (GNPM),mostly resulting in a positive effect on harvest index (HI).In contrast,the EP genotype exerted a negative effect on thousand-grain weight (KGW).The ratio of the performance of the EP genotype relative to the NEP genotype in terms of yield and total biomass correlated positively with mean daily solar radiation during a 40-day period around heading.These results indicate that the effectiveness of the EP genotype depends on the availability of solar radiation,and the effect of this genotype is consistently positive for sink formation,conditional in terms of source capacity,and positive in a high-radiation environment.展开更多
基金supported by the National Key Research and Development Program of China(2016YFD0300504)the Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province,China(2014046)
文摘The erect panicle (Ep) type is an important characteristic for japonica super rice in Northeast China and plays a significant role in enhancing yield. The Ep type is considered to be a genetic ideotype resource to the japonica super rice group by virtue of its agronomic advantages such as grain number per panicle and biomass. This study addresses the effects of nitrogen and planting density conditions on yielding performance regarding panicle type (PT) using the recombinant inbred line (RIL) population derived from the cross between an Ep variety Liaogeng 5 and non-Ep variety Wanlun 422. The genetics underlying the Ep type proved to be robust not only for panicle-type optimization but also plant height, panicle length, flag leaf length and seed density. We also found that regardless of nitrogen and density, correlation between harvest index (HI) and plant height was not significant in Ep type whatever the nitrogen and density. The application of Ep type provides a potential strategy for yield improvement by increasing biomass through HI maintainable in rice.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U1708231 and JSPS KAKENHI,26292013)。
文摘The dense and erect panicle (EP) genotype conferred by DEP1 has been widely used in the breeding of high-yield Chinese japonica rice varieties.However,the breeding value of the EP genotype has rarely been determined at the plant population level.Therefore,the effects of the interaction of EP genotype and the environment at different locations and times on rice yield and its various components were investigated in this study.Two sets of near-isogenic lines (NILs)of EP and non-EP (NEP) genotypes with Liaojing 5 (LG5) and Akitakomachi (AKI) backgrounds were grown in the field in 2016 and 2017 in Shenyang,China,and Kyoto,Japan.In 2018,these sets were grown only in Kyoto,Japan.The average yields of the EP and NEP genotypes were 6.67 and 6.13 t ha^(-1)for the AKI background,and 6.66 and 6.58 t ha^(-1)for the LG5 background,respectively.The EP genotype positively affected panicle number (PN) and grain number per square meter (GNPM),mostly resulting in a positive effect on harvest index (HI).In contrast,the EP genotype exerted a negative effect on thousand-grain weight (KGW).The ratio of the performance of the EP genotype relative to the NEP genotype in terms of yield and total biomass correlated positively with mean daily solar radiation during a 40-day period around heading.These results indicate that the effectiveness of the EP genotype depends on the availability of solar radiation,and the effect of this genotype is consistently positive for sink formation,conditional in terms of source capacity,and positive in a high-radiation environment.