We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AIGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain ...We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AIGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gatel ) with two different work functions (gate = 4.2 eV, gatel = 5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4 × 10^-6 A/μm, the off current remains as low as 9.1 × 10^-14 A/μm. So /ON/OFF ratio of 10^8 is achieved. Point subthreshold swing has also been reduced to a value of 41 mV/decade for TiO2 gate material.展开更多
For the first time, we investigate the temperature effect on AIGaAs/Si based hetero-structure junction- less double gate tunnel field effect transistor. Since junctionless tunnel FET is an alternative substitute devic...For the first time, we investigate the temperature effect on AIGaAs/Si based hetero-structure junction- less double gate tunnel field effect transistor. Since junctionless tunnel FET is an alternative substitute device for ultra scaled deep-submicron CMOS technology, having very good device characteristics such as an improved sub- threshold slope (〈 60 mV/decade at 300 K) and very small static leakage currents. The improved subthreshold slope and static leakage current confirms that it will be helpful for the development of future low power switching circuits. The 2-D computer based simulation results show that OFF-state leakage current is almost temperature independent for the proposed device structure.展开更多
We investigate the quantum-mechanical effects on the electrical properties of the double-gate j unction- less field effect transistors. The quantum-mechanical effect, or carrier energy-quantization effects on the thre...We investigate the quantum-mechanical effects on the electrical properties of the double-gate j unction- less field effect transistors. The quantum-mechanical effect, or carrier energy-quantization effects on the threshold voltage, of DG-JLFET are analytically modeled and incorporated in the Duarte et al. model and then verified by TCAD simulation.展开更多
文摘We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AIGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gatel ) with two different work functions (gate = 4.2 eV, gatel = 5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4 × 10^-6 A/μm, the off current remains as low as 9.1 × 10^-14 A/μm. So /ON/OFF ratio of 10^8 is achieved. Point subthreshold swing has also been reduced to a value of 41 mV/decade for TiO2 gate material.
文摘For the first time, we investigate the temperature effect on AIGaAs/Si based hetero-structure junction- less double gate tunnel field effect transistor. Since junctionless tunnel FET is an alternative substitute device for ultra scaled deep-submicron CMOS technology, having very good device characteristics such as an improved sub- threshold slope (〈 60 mV/decade at 300 K) and very small static leakage currents. The improved subthreshold slope and static leakage current confirms that it will be helpful for the development of future low power switching circuits. The 2-D computer based simulation results show that OFF-state leakage current is almost temperature independent for the proposed device structure.
文摘We investigate the quantum-mechanical effects on the electrical properties of the double-gate j unction- less field effect transistors. The quantum-mechanical effect, or carrier energy-quantization effects on the threshold voltage, of DG-JLFET are analytically modeled and incorporated in the Duarte et al. model and then verified by TCAD simulation.