期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pt supported on Zn modified silicalite-1 zeolite as a catalyst for n-hexane aromatization 被引量:1
1
作者 Guodong Liu Jiaxu Liu +3 位作者 Ning He shishan sheng Guiru Wang Hongchen Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期96-103,共8页
Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Le... Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Lewis and Bronsted acid sites were detected in Pt-Zn/S-1 catalyst by means of FT-IR adsorption of NH3 experiment,which were identified as mostly weak and medium ones.Besides,Pt and Zn species showed strong interaction,as revealed by the TPR(Temperature-programmed reduction)and XPS(X-ray photoelectron spectroscopy)experiments.Pt-Zn/S-1 catalyst exhibited excellent aromatization function rather than isomerization and cracking side reactions in the conversion of n-hexane.Pulse experimental study showed that 75.6%of n-hexane conversion and 76.8%of benzene selectivity were obtained over Pt0.1-Zn60/S-l catalyst at 550℃ and under atmospheric pressure.By spectroscopy tests and pulse experimental results,it was concluded that the n-hexane aromatization over Pt-Zn/S-1 catalyst follows a metal-acid bifunctional mechanism.Furthermore,with the assistance of Zn,the electron-deficient Pt species in Pt-Zn/S-1 showed good sulfur tolerance performance. 展开更多
关键词 SILICALITE-1 ZEOLITE Pt-Zn/Silicalite-1 N-HEXANE AROMATIZATION Sulfur-resistance
下载PDF
Perovskite-type B-site Bi-doped ceramic membranes for oxygen separation 被引量:2
2
作者 Zongping Shao You Cong +2 位作者 Guoxing Xiong shishan sheng Weishen Yang 《Chinese Science Bulletin》 SCIE EI CAS 2000年第10期889-893,共5页
Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized. Cubic perovskite structures were formed for BaBi0.2COyFe0.8-yO3-δ (y≤0.4) and BaBixCo0.2Fe0.8-xO3-δ (x=0.1 -0.5). The mater... Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized. Cubic perovskite structures were formed for BaBi0.2COyFe0.8-yO3-δ (y≤0.4) and BaBixCo0.2Fe0.8-xO3-δ (x=0.1 -0.5). The materials exhibited considerable high oxygen permeability at high temperature. The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-δmembrane reached about0.77×106 mol/cm2 ·s under an air/helium oxygen partial pressure gradient at 900 ℃, which was much higher than that of other bismuth-contained mixed conducting membranes. The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content. The materials also demonstrated excellent reversibility of oxygen adsorption and desorption. Stable time-related oxygen permeation fluxes were found for BaBi0.2Co0. 展开更多
关键词 BI2O3 mixed conductor INORGANIC membrane PEROVSKITE oxygen permeation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部